2.已知函數(shù)f(x)=$\sqrt{3}$sinπx-sin(πx+$\frac{π}{6}$),x∈R.
(1)求y=f(x)的正零點(diǎn);   
(2)設(shè)f(x)的所有正零點(diǎn)依次組成數(shù)列{an},數(shù)列{bn}滿足b1=0,bn+1-bn=an,n∈N*,求{bn}的通項(xiàng)公式.

分析 (1)由條件利用三角函數(shù)的恒等變換,化簡函數(shù)f(x)的解析式,再根據(jù)函數(shù)的零點(diǎn)的定義求得(x)的正零點(diǎn).
(2)由條件利用累加法求數(shù)列{bn}的通項(xiàng)公式.

解答 解:(1)f(x)=$\sqrt{3}$sinπx-sin(πx+$\frac{π}{6}$)=$\sqrt{3}$sinπx-sinπxcos$\frac{π}{6}$-cosπxsin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$sinπx-$\frac{1}{2}$cosπx=sin(πx-$\frac{π}{6}$),
令f(x)=sin(πx-$\frac{π}{6}$)=0,求得 πx-$\frac{π}{6}$=kπ,k∈N,即 x=k+$\frac{1}{6}$,k∈N.
(2)f(x)的所有正零點(diǎn)依次組成數(shù)列{an},則an=n-$\frac{5}{6}$,
數(shù)列{bn}滿足b1=0,bn+1-bn=an,n∈N*,∴b1=0,b2-b1=1-$\frac{5}{6}$,b3-b2=2-$\frac{5}{6}$,…bn-bn-1=(n-1)-$\frac{5}{6}$,
累加可得 bn=0+(1-$\frac{5}{6}$)+(2-$\frac{5}{6}$)+…+(n-1-$\frac{5}{6}$)=[1+2+3+…+(n-1)]-(n-1)$\frac{5}{6}$=$\frac{(n-1)•n}{2}$-(n-1)$\frac{5}{6}$=$\frac{{3n}^{2}-8n-5}{6}$,
即bn=$\frac{{3n}^{2}-8n-5}{6}$.

點(diǎn)評 本題主要考查三角函數(shù)的恒等變換,函數(shù)的零點(diǎn)的定義,用累加法求數(shù)列的通項(xiàng)公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其中F1、F2為左右焦點(diǎn),O為坐標(biāo)原點(diǎn),直線l與橢圓交于P(x1、y1),Q(x2,y2)兩個不同點(diǎn),當(dāng)直線l過橢圓C右焦點(diǎn)F2且傾斜角為$\frac{π}{4}$時,原點(diǎn)O到直線l的距離為$\frac{\sqrt{2}}{2}$,又橢圓上的點(diǎn)到焦點(diǎn)F2的最近距離為$\sqrt{3}$-1
(1)求橢圓C的方程;
(2)以O(shè)P、OQ為鄰邊做平行四邊形OQNP,當(dāng)平行四邊形OQNP面積為$\sqrt{6}$時,求平行四邊形OQNP的對角線之積|ON|•|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.θ∈[0,π],$cosθ=\frac{3}{4}$,則$tan\frac{θ}{2}$=( 。
A.$\sqrt{7}$B.$\frac{{\sqrt{7}}}{7}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)過點(diǎn)(2,0),且離心率為$\frac{1}{2}$.
(1)若M(0,6),求橢圓C1上的點(diǎn)與點(diǎn) M距離的平方的最大值;
(2)已知過原點(diǎn) O的直線l與拋物線C2:${y^2}=\frac{{\sqrt{3}}}{2}x$交于 O,A兩不同點(diǎn),與橢圓交于 B,C兩不同點(diǎn),其中 B,C兩點(diǎn)的縱坐標(biāo)分別滿足y B<0,yC>0,若$\overrightarrow{{B}{O}}=\overrightarrow{C{A}}$,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1 (a>0,b>0)的一條漸近線的方程為2x-y=0,則該雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式$|\begin{array}{l}{x}&{1}\\{3}&{x}\end{array}|$+2x>0的解集為{x|x<-3或x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線$y=\frac{1}{8}{x^2}$的焦點(diǎn)到雙曲線${y^2}-\frac{x^2}{3}=1$的一條漸近線的距離為(  )
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知空間中三點(diǎn)A(1,0,0),B(2,1,-1),C(0,-1,2),則點(diǎn)C到直線AB的距離為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,DE⊥AC,交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F.
(1)求證:DE是圓O的切線;
(2)若∠CAB=60°,⊙O的半徑為2,EC=1,求DE的值.

查看答案和解析>>

同步練習(xí)冊答案