分析 (1)連接OD,由已知得∠ODA=∠OAD=∠DAC,從而OD∥AE,由此能證明DE是圓O的切線.
(2)連結(jié)BC,由已知得AC=2,AE=EC+CA=3,由此利用圓的切割線定理能求出DE的值.
解答 (1)證明:連接OD,
∵AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,
∴∠ODA=∠OAD=∠DAC,∴OD∥AE,…(3分)
又AE⊥DE,∴DE⊥OD,又OD為半徑,
∴DE是圓O的切線.…(5分)
(2)解:連結(jié)BC,在Rt△ABC中,∠CAB=60°,AB=4,
∴AC=ABcos60°=2…(7分)
又∵EC=1,∴AE=EC+CA=3,
由圓的切割線定理得:
DE2=CE•EA=3,∴$DE=\sqrt{3}$.…(10分)
點(diǎn)評(píng) 本題考查圓的切線的證明,考查線段長的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的切割線定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | [0,2] | C. | (-∞,2] | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com