7.解不等式
(1)$\sqrt{{x}^{2}+2x-3}$<x+2;
(2)$\sqrt{2x-1}$>x-2.

分析 (1)原不等式等價(jià)于即$\left\{\begin{array}{l}{{x}^{2}+2x-3<(x+2)^{2}}\\{{x}^{2}+2x-3≥0}\\{x+2>0}\end{array}\right.$,解得即可;
(2)需要分類(lèi)討論,當(dāng)x-2<0,且2x-1≥0時(shí),恒成立,當(dāng)x-2≥0時(shí),$\left\{\begin{array}{l}{2x-1>(x-2)^{2}}\\{2x-1>0}\end{array}\right.$,解得即可.

解答 解:(1)$\sqrt{{x}^{2}+2x-3}$<x+2,則$\left\{\begin{array}{l}{\sqrt{{x}^{2}+2x-3}<x+2}\\{x+2>0}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}^{2}+2x-3<(x+2)^{2}}\\{{x}^{2}+2x-3≥0}\\{x+2>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{2x>-7}\\{x≤-1或x≥3}\\{x>-2}\end{array}\right.$,
解得-2<x≤-1或x≥3,
故不等式的解集為(-2,-1]∪[3,+∞);
(2)$\sqrt{2x-1}$>x-2,
當(dāng)x-2<0,且2x-1≥0時(shí),恒成立,解得$\frac{1}{2}$≤x<2,
當(dāng)x-2≥0時(shí),$\left\{\begin{array}{l}{2x-1>(x-2)^{2}}\\{2x-1>0}\end{array}\right.$,解得2≤x<5,
綜上所述,不等式的解集為[$\frac{1}{2}$,5].

點(diǎn)評(píng) 本題主要考查根式不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{6}}{6}$x,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{42}}{6}$B.$\frac{7}{6}$C.$\frac{\sqrt{5}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示的數(shù)陣中,用A(m,n)表示第m行的第n個(gè)數(shù),則依此規(guī)律A(8,2)為(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{7}{12}$D.$\frac{11}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.對(duì)于雙曲線C(a,b):$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),若點(diǎn)P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$<1,則稱(chēng)P在C(a,b)的外部,若點(diǎn)P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$>1,則稱(chēng)C(a,b)在的內(nèi)部;
(1)若直線y=kx+1上的點(diǎn)都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過(guò)點(diǎn)(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點(diǎn)構(gòu)成的圓弧長(zhǎng)等于該圓周長(zhǎng)的一半,求b、r滿足的關(guān)系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點(diǎn)都在C(a,b)的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中,x=0是極值點(diǎn)的函數(shù)是(  )
A.y=-x3B.y=x2C.y=tanx-xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.雙曲線2x2-y2=6的焦距為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.雙曲線${x^2}-\frac{y^2}{3}=1$的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線截圓(x-2)2+y2=3所得的弦長(zhǎng)等于2$\sqrt{2}$,則雙曲線的離心率為(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤5}\\{x+2y-11>0}\\{\;}\end{array}\right.$,則2x+y的最小值為( 。
A.16B.13C.10D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案