13.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤0\\-\frac{1}{2}x+1,x>0\end{array}\right.$,則f[f(-1)]=0.

分析 直接利用分段函數(shù),由里及外逐步求解即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤0\\-\frac{1}{2}x+1,x>0\end{array}\right.$,
則f[f(-1)]=f((-1)2+1)=f(2)=$-\frac{1}{2}×2+1=0$.
故答案為:0.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示的幾何體中,ABCD為菱形,ACEF為平行四邊形,△BDF為等邊三角形,O為AC與BD的交點.
(Ⅰ)求證:BD⊥平面ACEF;
(Ⅱ)若∠DAB=60°,AF=FC,求二面角B-EC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知全集U=R,若A={x|x<0},B={x|x≥2},則CR(A∪B)={x|0≤x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知a2+c2-b2=ac,且$\sqrt{2}$b=$\sqrt{3}$c.
(1)求角A的大;
(2)設(shè)函數(shù)f(x)=1+cos(2x+B)-cos2x,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓$\frac{x^2}{4}+\frac{y^2}{16}=1$被直線l截得弦的中點坐標為$(\frac{1}{2},1)$,則直線l的方程2x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)m的嚴重問題,為了了解強度D(單位:分貝)與聲音能量I(單位:W/cm2)之間的關(guān)系,將測量得到的聲音強度Di和聲音能量Ii(i=1.2.…,10)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overline{I}$$\overline{D}$$\overline{W}$$\sum_{i=1}^{10}$(Ii-$\overline{I}$)2$\sum_{i=1}^{10}$(Wi-$\overline{W}$)2$\sum_{i=1}^{10}$(Ii-$\overline{I}$)(Di-$\overline{D}$)$\sum_{i=1}^{10}$(Wi-$\overline{W}$)(Di-$\overline{D}$)
1.04×10-1145.7-11.51.56×10-210.516.88×10-115.1
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}$$\sum_{i=1}^{10}$Wi
(Ⅰ)根據(jù)表中數(shù)據(jù),求聲音強度D關(guān)于聲音能量I的回歸方程D=a+blgI;
(Ⅱ)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪聲污染,城市中某點P共受到兩個
聲源的影響,這兩個聲源的聲音能量分別是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知點P的聲音
能量等于聲音能量Il與I2之和.請根據(jù)(I)中的回歸方程,判斷P點是否受到噪聲污染的干
擾,并說明理由.
附:對于一組數(shù)據(jù)(μl,ν1),(μ2,ν2),…(μn,νn),其回歸直線ν=α+βμ的斜率和截距的最小二乘估計分別為:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在矩形ABCD中,AB=3,BC=$\sqrt{3}$,$\overrightarrow{BE}=2\overrightarrow{EC}$,點F在邊CD上,若$\overrightarrow{AB}•\overrightarrow{AF}=3$,則$\overrightarrow{AE}•\overrightarrow{BF}$的值為( 。
A.4B.$\frac{8\sqrt{3}}{3}$C.0D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F是拋物線x2=4y的焦點,P為拋物線上的動點,且A的坐標為(0,-1),則$\frac{|PF|}{|PA|}$的最小值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.數(shù)列{an}的前n項和Sn=2n,則a4=( 。
A.16B.8C.4D.2

查看答案和解析>>

同步練習(xí)冊答案