分析 求出向量$\overrightarrow{a}$的模即向量$\overrightarrow$的模,設(shè)出$\overrightarrow$的坐標,根據(jù)兩角差的正切公式求出tanβ,根據(jù)勾股定理求出$\overrightarrow$的坐標即可.
解答 解:如圖示:
,
由題意得:|$\overrightarrow{a}$|=$\sqrt{1+4}$=$\sqrt{5}$,
∵tanα=$\frac{2}{1}$=2,
∴tanβ=tan(α-$\frac{π}{4}$)=$\frac{tanα-tan\frac{π}{4}}{1+tanαtan\frac{π}{4}}$=$\frac{1}{3}$,
設(shè)$\overrightarrow$=(x,y),
則$\left\{\begin{array}{l}{x=3y}\\{{x}^{2}{+y}^{2}=5}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,
故答案為:($\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).
點評 本題考查了向量的運算,考查兩角差的正切公式,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | 4 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com