2.二分法定義:對于區(qū)間[a,b]上連續(xù),且f(a)f(b)<0的函數(shù)y=f(x),通過不斷把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),從而得到零點(diǎn)近似值的方法,叫做二分法.

分析 由于每次計(jì)算都把原來的區(qū)間平均分成兩份,根據(jù)這樣的規(guī)律填寫.

解答 解答:由于每次計(jì)算都把原來的區(qū)間平均分成兩份,所以填一分為二.
故答案為一分為二.

點(diǎn)評 本題考查了二分法的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求適合下列條件的曲線方程.
(1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過點(diǎn)M(3,2)的橢圓標(biāo)準(zhǔn)方程;
(2)頂點(diǎn)是雙曲線16x2-9y2=144的中心,準(zhǔn)線過雙曲線的左頂點(diǎn),且垂直于坐標(biāo)軸的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)的一組基底,且$λ\overrightarrow{a}$+$μ\overrightarrow$=$\overrightarrow{0}$(λ,μ∈R),則( 。
A.$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=$\overrightarrow{0}$B.λ=μ=0C.λ=0,$\overrightarrow$=$\overrightarrow{0}$D.$\overrightarrow{a}$=$\overrightarrow{0}$,μ=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{a}$=(sinωx,sin(ωx-$\frac{π}{4}$)),$\overrightarrow$=(sinωx+2$\sqrt{3}$cosωx,sin(ωx+$\frac{π}{4}$)),函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,函數(shù)g(x)=f(x)-$\frac{5}{2}$任意兩個(gè)相鄰零點(diǎn)間的距離為π,其中ω為常數(shù),且ω>0.
(1)若x=x0(0≤x0≤$\frac{π}{2}$)是函數(shù)f(x)的一個(gè)零點(diǎn),求sin2x0的值;
(2)當(dāng)x∈[-$\frac{π}{12}$,$\frac{2π}{3}$]時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.式子$\frac{tan24°+tan36°+tan120°}{tan24°tan36°}$的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sinα-cosα=$\frac{1}{5}$,且0<α<π,求下列各式的值:
(1)sinαcosα;(2)sinα+cosα;(3)sin3α+cos3α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知方程sin(α-3π)=2cos(α-4π),求$\frac{sin(π-α)+5cos(2π-α)}{2sin(\frac{3π}{2}-α)-sin(2π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=Asin(ωx+φ),在同一周期內(nèi),當(dāng)個(gè)x=$\frac{π}{9}$時(shí)函數(shù)取得最大值2,當(dāng)x=$\frac{4π}{9}$時(shí)取得最小值-2,則該函數(shù)的解析式為(  )
A.y=2sin(3x-$\frac{π}{6}$)B.y=2sin(3x+$\frac{π}{6}$)C.y=2sin($\frac{x}{3}$+$\frac{π}{6}$)D.y=2sin($\frac{x}{3}$-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{a}{x-1}$+ax(a>0)在(1,+∞)上的最小值為15,函數(shù)g(x)=|x+a|+|x+1|.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)g(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案