3.過點(diǎn)(1,3)且與直線x+2y-1=0平行的直線方程是x+2y-7=0.

分析 求出直線的斜率,然后求解直線方程.

解答 解:與直線x+2y-1=0平行的直線的斜率為:$-\frac{1}{2}$,
由點(diǎn)斜式方程可得:y-3=-$\frac{1}{2}$(x-1),化簡(jiǎn)可得x+2y-7=0.
故答案為:x+2y-7=0.

點(diǎn)評(píng) 本題考查直線方程的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將原油精煉為汽油、柴油、塑膠等各種不同產(chǎn)品,需要對(duì)原油進(jìn)行冷卻和加熱.如果第xh時(shí),原油的溫度(單位℃)為y=f(x)=x2-7x+15(0≤x≤8),則第4h時(shí)原油溫度的瞬時(shí)變化率是1℃/h;在第4h時(shí)附近,原油的溫度在上升.(此空填上升或下降)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=ax2+bx+c,滿足f(0)=2,f(x+1)-f(x)=2x-1.
(Ⅰ) 求函數(shù)f(x)的解析式;
(Ⅱ) 若關(guān)于x的不等式f(x)-t>0在[-1,2]上有解,求實(shí)數(shù)t的取值范圍;
(Ⅲ) 若函數(shù)g(x)=f(x)-mx的兩個(gè)零點(diǎn)分別在區(qū)間(-1,2)和(2,4)內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若命題“p且q”為假,且“?p”為假,則( 。
A.“p或q”為假B.q假C.q真D.p假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}滿足Sn=2an+n(n∈N*),則通項(xiàng)公式an=1-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=2-x-x,則函數(shù)y=f(|x|)的零點(diǎn)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.為了了解學(xué)生的視力情況,隨機(jī)抽查了一批學(xué)生的視力,將抽查結(jié)果繪制成頻率分布直方圖(如圖所示).若在[5.0,5.4]內(nèi)的學(xué)生人數(shù)是2,則根據(jù)圖中數(shù)據(jù)可得被樣本數(shù)據(jù)在[3.8,4.2)內(nèi)的人數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.兩條平行直線3x-4y+12=0與3x-4y-13=0間的距離為( 。
A.$\frac{1}{5}$B.$\frac{5}{2}$C.$\frac{23}{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義{x,y}max=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若a=tanθ,b=sinθ,c=cosθ,θ∈{θ|-$\frac{π}{4}$<θ<$\frac{3}{4}$π,θ≠0,$\frac{π}{4}$,$\frac{π}{2}$}且{a,b}max=a,{b,c}max=b,則θ的取值范圍是( 。
A.(-$\frac{π}{4}$,0)B.(0,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{2}$,$\frac{3}{4}$π)

查看答案和解析>>

同步練習(xí)冊(cè)答案