12.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a\;,\;b>0)$的左、右兩焦點,B是虛軸的端點,直線F1B與C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸交于點M.若|MF2|=|F1F2|,則C的離心率是( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

分析 確定PQ,MN的斜率,求出直線PQ與漸近線的交點的坐標,得到MN的方程,從而可得M的橫坐標,利用|MF2|=|F1F2|,即可求得C的離心率.

解答 解:線段PQ的垂直平分線MN,|OB|=b,|O F1|=c.∴kPQ=$\frac{c}$,kMN=-$\frac{c}$.
直線PQ為:y=$\frac{c}$(x+c),兩條漸近線為:y=±$\frac{a}$x.
由 $\left\{\begin{array}{l}{y=\frac{c}(x+c)}\\{y=\frac{a}x}\end{array}\right.$,得Q( $\frac{ac}{c-a}$,$\frac{bc}{c-a}$);
由 $\left\{\begin{array}{l}{y=\frac{c}(x+c)}\\{y=-\frac{a}x}\end{array}\right.$得P( $\frac{-ac}{c+a}$,$\frac{bc}{c+a}$).
∴直線MN為y-$\frac{{bc}^{2}}{{c}^{2}{-a}^{2}}$=-$\frac{c}$(x-$\frac{{a}^{2}c}{{c}^{2}{-a}^{2}}$),
令y=0得:xM=c(1+$\frac{{a}^{2}}{^{2}}$).
又∵|MF2|=|F1F2|=2c,
∴3c=xM=c(1+$\frac{{a}^{2}}{^{2}}$),
∴3a2=2c2
解之得:e2=$\frac{3}{2}$,即e=$\frac{\sqrt{6}}{2}$.
故選:B.

點評 本題考查雙曲線的幾何形狀,考查解方程組,考查學(xué)生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以線段兩個端點(3,8)和(7,4)為直徑的圓的方程(x-5)2+(y-6)2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且c=2,b=$\sqrt{2}$a,則△ABC面積的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=lg(a•4x+2x-1)
(1)如果x∈(1,2)時,f(x)有意義,確定a的取值范圍;
(2)a≤0,若f(x)值域為R,求a的值;
(3)在(2)條件下,g(x)為定義域為R的奇函數(shù),且x>0時,g(x)=10f(x)+1,對任意的t∈[-1,1],g(x2+tx)≥$\frac{{g}^{3}(x)}{|g(x)|}$恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和Sn=a(bn-1)(a≠0,b≠0且b≠1),證明:{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:y=mx2(m>0),焦點為F,直線2x-y+2=0交拋物線C于A,B兩點,P是線段AB的中點,過P作x軸的垂線交拋物線C于點Q,△ABQ是以Q為直角頂點的直角三角形,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a=(3,-4)$,$\overrightarrow b=(x,y)$,若$\overrightarrow a$∥$\overrightarrow b$,則( 。
A.3x-4y=0B.3x+4y=0C.4x+3y=0D.4x-3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}是公比為2的等比數(shù)列,且滿足$\frac{a_4}{a_2}-{a_3}=0$,則a4的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此橢圓上存在不同的兩點A,B關(guān)于直線y=4x+m對稱,則實數(shù)m的取值范圍是(  )
A.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{2}}{13}$)B.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)C.(-$\frac{\sqrt{2}}{13}$,$\frac{2\sqrt{13}}{13}$)D.(-$\frac{2\sqrt{3}}{13}$,$\frac{2\sqrt{3}}{13}$)

查看答案和解析>>

同步練習冊答案