A. | $\frac{7}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{3}{2}$ | D. | 1 |
分析 利用余弦函數(shù)的定義域和值域求得cosx的范圍,再利用二次函數(shù)的性質(zhì)求得y的最值,從而求得最大值和最小值的和.
解答 解:∵x∈[0.$\frac{2π}{3}$],∴cosx∈[-$\frac{1}{2}$,1],函數(shù)y=-sin2x-cosx+2=cos2x-cosx+1=${(cosx-\frac{1}{2})}^{2}$+$\frac{3}{4}$,
故當(dāng)cosx=$\frac{1}{2}$時(shí),函數(shù)y取得最小值為$\frac{3}{4}$,當(dāng)cosx=-$\frac{1}{2}$時(shí),函數(shù)y取得最大值為$\frac{7}{4}$,
故函數(shù)的最大值和最小值的和為$\frac{3}{4}$+$\frac{7}{4}$=$\frac{5}{2}$,
故選:B.
點(diǎn)評 本題主要考查余弦函數(shù)的定義域和值域,二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | $\frac{24}{25}$ | C. | $\frac{8}{5}$ | D. | $\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | d+2q=a1,2 | B. | a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$ | ||
C. | 每一橫行都是等差數(shù)列 | D. | ai,j=(2j-1)+21-i(i,j均為正整數(shù)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com