1.數(shù)列{an}的通項公式an=(-1)n-1•(4n-3),則數(shù)列{an}的前n項和為 Sn=$\left\{\begin{array}{l}{-2n,n為偶數(shù)}\\{2n-1,n為奇數(shù)}\end{array}\right.$.

分析 對n分類討論,利用“分組求和”即可得出.

解答 解:設(shè)數(shù)列{an}的前n項和為Sn
當n=2k(k∈N*)時,Sn=(1-5)+(9-13)+…+[(4n-7)-(4n-3)]=-4k=-2n.
當n=2k-1時,Sn=1+(-5+9)+(-13+17)+…+[-(4n-7)+(4n-3)]=1+4(k-1)=2n-1.
綜上可得:Sn=$\left\{\begin{array}{l}{-2n,n為偶數(shù)}\\{2n-1,n為奇數(shù)}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{-2n,n為偶數(shù)}\\{2n-1,n為奇數(shù)}\end{array}\right.$.

點評 本題考查了分類討論方法、“分組求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題中假命題是( 。
A.數(shù)列{an}是等差數(shù)列的充要條件是其前n項和是${S_n}=a{n^2}+bn$,a,b∈R
B.數(shù)列{an}是公比為q的等比數(shù)列且其前n項和是${S_n}=k{q^n}+t(q≠0且q≠1)$,則k+t=0
C.等差數(shù)列{an}的前n項和為Sn,則Sn,S2n-Sn,S3n-S2n也是等差數(shù)列
D.等比數(shù)列{an}的前n項和為Sn,則Sn,S2n-Sn,S3n-S2n也是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,頂點分別為A1,A2,B1,B2,左右焦點分別為F1,F(xiàn)2,延長B1F2與A2B2交于P點,若∠B1PA2為鈍角,則此橢圓的離心率的取值范圍為$(\frac{{\sqrt{5}-1}}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)在等差數(shù)列{an}中,d=2,n=15,an=-10,求a1及Sn
(2)在等比數(shù)列{an}中,已知a1=-1,a4=64,求q及S3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)在一個周期內(nèi)的圖象如圖所示.
(])求f(x)其解析式;
(2)求f(x)的對稱中心;
(3)方程f(x)-m=0在x∈[0,$\frac{π}{2}$]上有兩個解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.不等式組$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+4y≤0}\\{x≤0}\end{array}\right.$,表示的平面區(qū)域的面積等于8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知:函數(shù)y=(x2-ax+a)${\;}^{-\frac{1}{2}}$的定義域為一切實數(shù),則a的取值范圍為(0,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l上有三點A,B,P,若$\overrightarrow{AB}$=3$\overrightarrow{BP}$且$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,矩形ABCD中AD邊的長為1,AB邊的長為2,矩形ABCD位于第一象限,且頂點A,D分別在x軸y軸的正半軸上(含原點)滑動,則$\overrightarrow{OB}$$•\overrightarrow{OC}$的最大值是( 。
A.$\sqrt{5}$B.5C.6D.7

查看答案和解析>>

同步練習冊答案