分析 由題意可得$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\overrightarrow{DB}$•$\overrightarrow{CD}$=0,進而可得$\overrightarrow{AB}$•$\overrightarrow{CD}$,代入夾角公式可得cos<$\overrightarrow{AB}$,$\overrightarrow{CD}$>,可得向量的夾角,進而可得結(jié)論.
解答 解:由AC⊥b,BD⊥b可得AC⊥CD,BD⊥CD,
∴$\overrightarrow{AC}$•$\overrightarrow{CD}$=0,$\overrightarrow{DB}$•$\overrightarrow{CD}$=0,
∴$\overrightarrow{AB}$•$\overrightarrow{CD}$=($\overrightarrow{AC}$+$\overrightarrow{CD}$+$\overrightarrow{DB}$)•$\overrightarrow{CD}$
=$\overrightarrow{AC}$•$\overrightarrow{CD}$+|$\overrightarrow{CD}$|2+$\overrightarrow{DB}$•$\overrightarrow{CD}$
=0+|$\overrightarrow{CD}$|2+0=1,
∴cos<$\overrightarrow{AB}$,$\overrightarrow{CD}$>=$\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}|•|\overrightarrow{CD}|}$=$\frac{1}{2}$,
故向量$\overrightarrow{AB}$,$\overrightarrow{CD}$的夾角為60°
∴a與b的夾角為60°.
故答案為:60°.
點評 本題考查異面直線所成的角,化為向量的夾角進行計算是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 1008 | C. | 504 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②④ | C. | ①③ | D. | ①②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,4] | B. | [$\frac{1}{2}$,4] | C. | [-2,0) | D. | (-2,4] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com