1.2位女生和3位男生共5位同學站成一排,若女生甲不站兩端,3位男生中有且只有兩位男生相鄰,則不同排法的種數(shù)是( 。
A.36B.42C.48D.60

分析 從3名男生中任取2人“捆”在一起,剩下一名女生記作B,兩名女生分別記作甲、乙,則女生甲必須在A、B之間,最后再在排好的三個元素中選出四個位置插入乙.

解答 解:從3名男生中任取2人“捆”在一起記作A,(A共有C32A22=6種不同排法),
剩下一名男生記作B,兩名女生分別記作甲、乙;
則女生甲必須在A、B之間(若甲在A、B兩端.則為使A、B不相鄰,只有把女生乙排在A、B之間,此時就不能滿足女生甲不在兩端的要求)
此時共有6×2=12種排法(A左B右和A右B左)
最后再在排好的三個元素中選出四個位置插入乙,
∴共有12×4=48種不同排法.
故選:B.

點評 本題考查的是排列問題,把排列問題包含在實際問題中,解題的關鍵是看清題目的實質,把實際問題轉化為數(shù)學問題,解出結果以后再還原為實際問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.正△ABC中,過其中心G作邊BC的平行線,分別交AB,AC于點B1,C1,將△AB1C1沿B1C1折起到△A1B1C1的位置,使點A1在平面BB1C1C上的射影恰是線段BC的中點M,則二面角A1-B1C1-M的平面角大小是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某工廠為提升產(chǎn)品銷售,決定投入適當廣告費進行促銷,經(jīng)調(diào)查測算,該產(chǎn)品的銷售量M萬件與促銷費用x萬元滿足M=3-$\frac{2}{x+1}$(0≤x≤a,a為正常數(shù)),已知生產(chǎn)該批產(chǎn)品M萬件還需投入其他成本10+2M萬元,產(chǎn)品銷售價格定為(4+$\frac{20}{M}$)元/件.假定該廠家的生產(chǎn)能充分滿足市場需求.
(1)請將該產(chǎn)品的純利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,工廠的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.(1)解不等式:$\frac{9}{x+4}$≤2;
(2)已知不等式x2-2x+k2-1>0對一切實數(shù)x恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.用分析法證明:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{6}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{-{2}^{x}+m}{{2}^{x+1}+n}$,(其中m、n為參數(shù)).
(1)當m=n=1時,證明:f(x)不是奇函數(shù);
(2)如果m=1,n=2,判斷f(x)的單調(diào)性并給予證明.
(3)在(2)的條件下,求不等式f(f(x))+f($\frac{1}{4}$)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx+x2-3x-$\frac{x}{e^x}$(x>0)(e為自然對數(shù)的底數(shù))
(Ⅰ)求f(x)的極值;
(Ⅱ)求證:ex≥x+1;
(Ⅲ)求證f'(x)在(0,+∞)上為單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在復平面內(nèi),滿足z•(cos1-isin1)=1的復數(shù)z的共軛復數(shù)$\overline{z}$對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.過圓O:x2+y2=4內(nèi)一點A(不與O重合)且與圓O相切的動圓圓心C的軌跡是以O,A為焦點的橢圓.

查看答案和解析>>

同步練習冊答案