【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣ =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有 .
【答案】①③
【解析】解:①中,a,b中至少有一個大于等于1,則a+b>1,由a2﹣b2=(a+b)(a﹣b)=1,
所以a﹣b<1,故①正確.
②中 ﹣ = =1,只需a﹣b=ab即可,
取a=2,b= 滿足上式但a﹣b= >1,故②錯;
③構(gòu)造函數(shù)y=x﹣ex , x>0,y′=1﹣ex<0,函數(shù)單調(diào)遞減,
∵ea﹣eb=1,∴a>b,
∴a﹣ea<b﹣eb ,
∴a﹣b<ea﹣eb=1,
故③正確;
④若lna﹣lnb=1,則a=e,b=1,a﹣b=e﹣1>1,故④不正確.
故答案為:①③.
不正確的結(jié)論,列舉反例,正確的結(jié)論,進(jìn)行嚴(yán)密的證明,即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= sin ,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3}.
(1)求實(shí)數(shù)a,b的值;
(2)解不等式 >1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有學(xué)生1000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)),現(xiàn)用分層抽樣方法(按A類、B類分兩層)從該年級的學(xué)生中抽查100名同學(xué).如果以身高達(dá)到165厘米作為達(dá)標(biāo)的標(biāo)準(zhǔn),對抽取的100名學(xué)生進(jìn)行統(tǒng)計,得到以下列聯(lián)表:
身高達(dá)標(biāo) | 身高不達(dá)標(biāo) | 總計 | |
積極參加體育鍛煉 | 40 | ||
不積極參加體育鍛煉 | 15 | ||
總計 | 100 |
(1)完成上表;
(2)能否有犯錯率不超過0.05的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系?(的觀測值精確到0.001).
參考公式: ,
參考數(shù)據(jù):
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個公共點(diǎn),且滿
足,則的值為 ( )
A. B. 1 C. 2 D. 不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在[﹣m,m](m>0)上的函數(shù)f(x)= +xcosx(a>0,a≠1)的最大值和最小值分別是M、N,則M+N=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com