1.已知直線ax-by+2=0與曲線y=x3-1在點(diǎn)P(1,0)處的切線垂直,則$\frac{a}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,再由兩直線平行垂直的條件:斜率之積為-1,即可得到所求值.

解答 解:y=x3-1的導(dǎo)數(shù)為y′=3x2,
即有在點(diǎn)P(1,0)處的切線斜率為3,
由直線ax-by+2=0與切線垂直,
可得$\frac{a}$=-$\frac{1}{3}$.
故選B.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,同時(shí)考查兩直線垂直的條件:斜率之積為-1,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f-1(x)是指數(shù)函數(shù)f(x)的反函數(shù),且f(2)=4,則f-1(8)等于( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合M={x|x=$\frac{kπ+π}{2}$-$\frac{π}{4}$,k∈Z},N={x|x=$\frac{kπ}{4}$+$\frac{π}{2}$,k∈Z},則( 。
A.M=NB.M?NC.M⊆ND.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知命題p:關(guān)于x的方程x2-mx+m+3=0無(wú)實(shí)數(shù)根;命題q:方程$\frac{x^2}{8}+\frac{y^2}{m-1}$=1表示焦點(diǎn)在x軸上的橢圓;若命題p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.定義符號(hào)函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}\right.$,已知a,b∈R,f(x)=x|x-a|sgn(x-1)+b.
(1)求f(2)-f(1)關(guān)于a的表達(dá)式,并求f(2)-f(1)的最小值.
(2)當(dāng)b=$\frac{1}{2}$時(shí),函數(shù)f(x)在(0,1)上有唯一零點(diǎn),求a的取值范圍.
(3)已知存在a,使得f(x)<0對(duì)任意的x∈[1,2]恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2sin2x+sin2x-1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)$f({\frac{x_0}{2}})=cos({\frac{π}{6}+α})cos({\frac{π}{6}-α})+{sin^2}α$,求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列關(guān)系中,正確的個(gè)數(shù)為( 。
①$\frac{\sqrt{2}}{2}$∈r         
②0∈N*           
③{-5}⊆Z          
④∅⊆{∅}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,若2ccos(C-$\frac{π}{2}$)=asin(π-A)-bcos($\frac{π}{2}$+B),則圓M:x2+y2=4被直線l:ax-by+c=0所截得的弦長(zhǎng)為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.曲線y=x3-3x+1在點(diǎn)(0,1)處的切線方程為( 。
A.y=x+1B.y=-3x+1C.y=x-1D.y=3x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案