分析 由已知先求出VA-OBC=$\frac{1}{6}$,設(shè)球心O到平面ABC的距離為h,則VO-ABC=$\frac{1}{3}×{S}_{△ABC}×h$=V△A-OBC,利用等體積法能求出球心O到平面ABC的距離.
解答 解:∵球O的半徑為1,A,B,C三點都在球面上,且OA,OB,OC兩兩垂直,
∴OA=OB=OC=1,AB=AC=BC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
VA-OBC=$\frac{1}{3}×(\frac{1}{2}×1×1)×1$=$\frac{1}{6}$,
${S}_{△ABC}=\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin60°$=$\frac{\sqrt{3}}{2}$,
設(shè)球心O到平面ABC的距離為h,
則VO-ABC=$\frac{1}{3}×{S}_{△ABC}×h$=V△A-OBC,
∴$\frac{1}{3}×\frac{\sqrt{3}}{2}h=\frac{1}{6}$,解得h=$\frac{\sqrt{3}}{3}$.
∴球心O到平面ABC的距離為$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.
點評 本題考查球心到平面的距離的求法,是中檔題,解題時要認真審題,注意等體積法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\frac{5}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12π+$\frac{{8\sqrt{5}}}{3}$ | B. | 4π+$\frac{{8\sqrt{5}}}{3}$ | C. | 12π+8$\sqrt{5}$ | D. | 4π+8$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com