14.若某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A.7B.8C.9D.10

分析 計算循環(huán)中n與i的值,當(dāng)n=1時滿足判斷框的條件,退出循環(huán),輸出結(jié)果即可.

解答 解:模擬執(zhí)行程序,可得
n=10,i=1
執(zhí)行循環(huán)體,不滿足條件n是奇數(shù),n=5,i=2,
不滿足條件n=1,執(zhí)行循環(huán)體,滿足條件n是奇數(shù),n=16,i=3,
不滿足條件n=1,執(zhí)行循環(huán)體,不滿足條件n是奇數(shù),n=8,i=4,
不滿足條件n=1,執(zhí)行循環(huán)體,不滿足條件n是奇數(shù),n=4,i=5,
不滿足條件n=1,執(zhí)行循環(huán)體,不滿足條件n是奇數(shù),n=2,i=6,
不滿足條件n=1,執(zhí)行循環(huán)體,不滿足條件n是奇數(shù),n=1,i=7,
滿足條件n=1,退出循環(huán),輸出i的值為7.
故選:A.

點評 本題考查循環(huán)結(jié)構(gòu)的應(yīng)用,注意循環(huán)的結(jié)果的計算,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在正三棱柱ABC-A1B1C1中,AB=$\sqrt{2}$AA1,求證:BC1=AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.復(fù)數(shù)z滿足z(1-i)=|1+i|,則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)的對應(yīng)點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義A°B={x|x∈A或x∈B,但x∉A∩B}.已知M={y|y=2|x|},N={x|$\frac{3}{2-x}$≤2},則M°N=( 。
A.[0,1)∪(2,+∞)B.(-∞,$\frac{1}{2}$]∪[1,2]C.[$\frac{1}{2}$,1)∪(2,+∞)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某程序的框圖如圖所示,執(zhí)行該程序,若輸入的N=5,則輸出i=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一班和二班兩班共有學(xué)生120名,其中女同學(xué)50名,若一班有70名同學(xué),而女生30名,問在碰到二班同學(xué)時,正好碰到的是一名女同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)列{an}滿足|an+1-an|=p,當(dāng)p=$\frac{1}{2}$時,則稱{an}為“規(guī)則數(shù)列”;當(dāng)p=$\frac{1}{{2}^{n}}$時,則稱{an}為“收縮數(shù)列”,記Sn=a1+a2+…+an
(1)若{an}是首項為2的“規(guī)則數(shù)列”,求a2016的不同取值個數(shù)以及最大值,求使得Sn=0成立的n的最小值
(2)已知{an}是首項為3的“規(guī)則數(shù)列”,求證:a99=52成立的充要條件是數(shù)列{an}是遞增數(shù)列;
(3)是否存在首項a1≥1的“收縮數(shù)列”{an},使得$\underset{lim}{n→∞}$Sn存在,若存在,求出極限;若不存在,請說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知過拋物線y2=4x的焦點F作直線l交拋物線于A,B兩點,若$\overrightarrow{BF}$=2$\overrightarrow{FA}$,則點A的橫坐標(biāo)為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=x+$\frac{1}{x-b}$+c(b<-1,c∈R),函數(shù)g(x)=|f(x)|在區(qū)間[-1,1]上的最大值為M.
(1)若b=-2,求M的值;
(2)若M≥k對任意的b,c恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案