17.已知直線y=k(x+3)(k>0)與拋物線C:y2=12x相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=3|FB|,則k的值等于$\frac{2\sqrt{2}}{3}$.

分析 設(shè)A(x1,y1),B(x2,y2).聯(lián)立方程化為k2x2+(6k2-12)x+9k2=0,(k>0).可得根與系數(shù)的關(guān)系,利用焦點(diǎn)弦與拋物線的定義可得:|FA|=x1+3,|FB|=x2+3,利用|FA|=3|FB|,聯(lián)立解出即可.

解答 解:設(shè)A(x1,y1),B(x2,y2).
聯(lián)立直線y=k(x+3)(k>0)與拋物線C:y2=12x,
化為k2x2+(6k2-12)x+9k2=0,(k>0).
∴x1+x2=$\frac{12}{{k}^{2}}$-6①,x1x2=9②.
∵|FA|=3|FB|,|FA|=x1+3,|FB|=x2+3,
∴x1+3=2(x2+3)③,
化為x1=2x2+3.
聯(lián)立①②③,解得k=$\frac{2\sqrt{2}}{3}$.
故答案為:$\frac{2\sqrt{2}}{3}$.

點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與拋物線相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、焦點(diǎn)弦的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,x),若$\overrightarrow{a}$•$\overrightarrow$=2|$\overrightarrow{a}$|,則實(shí)數(shù)x等于( 。
A.-1B.1C.2D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.過(guò)M(1,2$\sqrt{2}$)作直線與拋物線y2=8x,有且只有一個(gè)公共點(diǎn),這樣的直線有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2x+1,x≥0}\\{(\frac{1}{2})^x-1,x<0}\end{array}\right.$,則f(-1)+f(2)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(diǎn)(-1,0)對(duì)稱;③x∈(-4,0)時(shí),f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m).若y=f(x)在x∈[-4,4]上恰有7個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,-e-2B.(-1-e-2,-e-2C.(-1-e-2,0)D.(-1-e-2,-1-3e-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=log2(3x+1)+$\frac{a}{lo{g}_{2}({3}^{x}+1)}$在[1,+∞)上無(wú)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-4,2)B.(-2,4)C.(0,+∞)D.(-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,當(dāng)x=$\frac{π}{12}$時(shí),f(x)取得最大值.
(1)求f(x)的解析式;
(2)求出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等比數(shù)列{an}中各項(xiàng)均為正數(shù)a1a5=4,a4=1,則{an}的公比q為( 。
A.2B.$\frac{1}{2}$C.±$\frac{1}{2}$D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示,過(guò)點(diǎn)(1,0)的直線與拋物線y2=x交于A、B兩點(diǎn),射線OA和OB分別和圓(x-2)2+y2=4交于D、E兩點(diǎn),若$\frac{{S}_{△OAB}}{{S}_{△ODE}}$=λ,則λ的最小值是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案