分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性求得ω、再根據(jù)最大值求得φ,可得函數(shù)的解析式.
(2)由條件利用正弦函數(shù)的單調(diào)性求得它的單調(diào)區(qū)間.
解答 解:(1)∵函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ+$\frac{π}{4}$)的最小正周期為π,
∴$\frac{2π}{ω}$=π,∴ω=2,f(x)=$\sqrt{2}$sin(2x+φ+$\frac{π}{4}$).
根據(jù)當(dāng)x=$\frac{π}{12}$時(shí),f(x)=$\sqrt{2}$sin(2•$\frac{π}{12}$+φ+$\frac{π}{4}$)=$\sqrt{2}$,∴φ+$\frac{5π}{12}$=2kπ+$\frac{π}{2}$,k∈Z,∴取φ=$\frac{π}{12}$,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$).
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z;
同理求得函數(shù)的減區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、最值、以及它的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{2}$,1) | B. | ($\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
運(yùn)費(fèi)(元/噸) | ||
甲庫(kù) | 乙?guī)?/TD> | |
A鎮(zhèn) | 240+10a | 180 |
B鎮(zhèn) | 260 | 210 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40小時(shí) | B. | 50小時(shí) | C. | 60小時(shí) | D. | 80小時(shí) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com