分析 (1)由an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*),可得2n+1an+1-2nan=2n+3.利用“累加求和方法”即可得出.
(2)由(1)可得:an=$\frac{{n}^{2}}{{2}^{n}}$+$\frac{n-1}{{2}^{n-1}}$.?dāng)?shù)列{an}的前n項和Sn=($\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$)+($0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$).設(shè)An=$0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$,Bn=$\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$.利用“錯位相減法”可得An,兩次利用“錯位相減法”可得Bn.
解答 解:(1)∵an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*),
∴2n+1an+1-2nan=2n+3.
∴2nan=$({2}^{n}{a}_{n}-{2}^{n-1}{a}_{n-1})$+$({2}^{n-1}{a}_{n-1}-{2}^{n-2}{a}_{n-2})$+…+(22a2-2a1)+2a1
=2(n-1)+3+2(n-2)+3+…+2×1+3+1
=$\frac{2×(n-1+1)(n-1)}{2}$+3(n-1)+1=n2+2n-2.
∴an=$\frac{{n}^{2}+2n-2}{{2}^{n}}$.
(2)由(1)可得:an=$\frac{{n}^{2}}{{2}^{n}}$+$\frac{n-1}{{2}^{n-1}}$.
數(shù)列{an}的前n項和Sn=($\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$)+($0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$).
設(shè)An=$0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$,Bn=$\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$.
①先求An,∵An=$0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$,
∴$\frac{1}{2}{A}_{n}$=0+$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-2}{{2}^{n-1}}$+$\frac{n-1}{{2}^{n}}$,
則$\frac{1}{2}$An=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n-1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{n-1}{{2}^{n}}$,可得An=2-$\frac{n+1}{{2}^{n-1}}$.
②∵Bn=$\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$,
∴$\frac{1}{2}{B}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{{2}^{2}}{{2}^{3}}$+…+$\frac{(n-1)^{2}}{{2}^{n}}$+$\frac{{n}^{2}}{{2}^{n+1}}$,
$\frac{1}{2}$Bn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$-$\frac{{n}^{2}}{{2}^{n+1}}$,
令Cn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$,
則$\frac{1}{2}{C}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
$\frac{1}{2}{C}_{n}$=$\frac{1}{2}+2(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=$2×\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{1}{2}$-$\frac{2n-1}{{2}^{n+1}}$,
∴Cn=3-$\frac{3+2n}{{2}^{n}}$.
∴$\frac{1}{2}$Bn=3-$\frac{3+2n}{{2}^{n}}$-$\frac{{n}^{2}}{{2}^{n+1}}$,∴Bn=6-$\frac{6+4n+{n}^{2}}{{2}^{n}}$.
∴Sn=6-$\frac{6+4n+{n}^{2}}{{2}^{n}}$+2-$\frac{n+1}{{2}^{n-1}}$=8-$\frac{8+6n+{n}^{2}}{{2}^{n}}$.
點評 本題考查了“累加求和”方法、等比數(shù)列的通項公式與求和公式、“錯位相減法”,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n≤5? | B. | n≤6? | C. | n≥5? | D. | n≥6? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -4 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{75}{2}$ | B. | $\frac{{75\sqrt{3}}}{2}$ | C. | $\frac{{75\sqrt{2}}}{2}$ | D. | $\frac{{75\sqrt{6}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com