2.已知x>0,y>0,且x+y>2,求證:$\frac{1+y}{x}$<2或$\frac{1+x}{y}$<2.

分析 本題證明結(jié)論中結(jié)構(gòu)較復(fù)雜,而其否定結(jié)構(gòu)簡單,故可用反證法證明其否定不成立,以此來證明結(jié)論成立.

解答 證明:假設(shè):$\frac{1+y}{x}$≥2且$\frac{1+x}{y}$≥2.即 $\left\{\begin{array}{l}{1+x≥2y}\\{1+y≥2x}\end{array}\right.$,
∴2+x+y≥2x+2y,
∴x+y≤2,這與x+y>2矛盾.
∴假設(shè)不成立,
∴$\frac{1+y}{x}$<2或$\frac{1+x}{y}$<2.

點(diǎn)評 本考點(diǎn)是反證法證明命題,在作證明題時,對于一些條件相對較少或者證明時需要分類討論的題型,最好試試用反證法能否證明問題.對于有些題如本題,用反證法證明可以大大降低題目的解決難度

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\frac{x}{e^x}$,f′(x)為f(x)的導(dǎo)函數(shù),定義f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N*),經(jīng)計算f1(x)=$\frac{1-x}{e^x}$,f2(x)=$\frac{x-2}{e^x}$,f3(x)=$\frac{3-x}{e^x}$,…,根據(jù)以上事實(shí),由歸納可得:當(dāng)n∈N*時,fn(x)=f(x)=$\frac{n-x}{{e}^{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2x2+3x-5.
(1)求當(dāng)x1=4,且△x=1時,函數(shù)增量△y和平均變化率$\frac{△y}{△x}$;
(2)求當(dāng)x1=4,且△x=0.1時,函數(shù)增量△y和平均變化率$\frac{△y}{△x}$;
(3)若設(shè)x2=x1+△x,分析(1)(2)問中的平均變化率的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x),若f(x)-f′(x)<1,f(0)=2016,則不等式f(x)>2015•ex+1(其中e為自然對數(shù)的底數(shù))的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用行列式解關(guān)于x,y的方程組:
$\left\{\begin{array}{l}{3mx-4y=m}\\{3x+(m-5)y=1}\end{array}\right.$(其中m∈R),并對解的情況進(jìn)行討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)f(x)=log2(-x2+4x-3)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若圓心在第四象限,半徑為$\sqrt{10}$的圓C與直線y=3x相切于坐標(biāo)原點(diǎn)O,則圓C的方程是( 。
A.(x-2)2+(y+1)2=10B.(x-3)2+(y+1)2=10C.(x-1)2+(y+3)2=10D.(x+1)2+(y-3)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題p:曲線C1:$\frac{{x}^{2}}{{k}^{2}}$+$\frac{{y}^{2}}{2k+8}$=1表示焦點(diǎn)在x軸上的橢圓,命題q:(k-1)x2+(k-5)y2=1表示雙曲線,若p或q為真,p且q為假,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+k+1(a>0).
(1)若f(-1)=0,且對任意實(shí)數(shù)x均有f(x)≥0,求f(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案