分析 (1)由f(-1)=0,可得a-b+1=0即b=a+1,又對任意實數(shù)x均有f(x)≥0成立,可得$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac≤0}\end{array}\right.$恒成立,即(a-1)2≤0恒成立,從而可求出a,b的值;
(2)由(1)可知f(x)=x2+2x+1,可得g(x)=x2+(2-k)x+1,由g(x)在x∈[-2,2]時是單調(diào)函數(shù),可得[-2,2]?(-∞,$\frac{k-2}{2}$]或[-2,2]?($\frac{k-2}{2}$,+∞],從而得出2≤$\frac{k-2}{2}$或$\frac{k-2}{2}$≤-2,解之即可得出k的取值范圍.
解答 解:(1)∵f(-1)=0,
∴a-b+1=0即b=a+1,
又對任意實數(shù)x均有f(x)≥0成立
∴$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac≤0}\end{array}\right.$恒成立,即(a-1)2≤0恒成立
∴a=1,b=2;
(2)由(1)可知f(x)=x2+2x+1
∴g(x)=x2+(2-k)x+1
∵g(x)在x∈[-2,2]時是單調(diào)函數(shù),
∴[-2,2]?(-∞,$\frac{k-2}{2}$]或[-2,2]?($\frac{k-2}{2}$,+∞]
∴2≤$\frac{k-2}{2}$或$\frac{k-2}{2}$≤-2,
即實數(shù)k的取值范圍為(-∞,-2]∪[6,+∞).
點評 本題考查了函數(shù)的恒成立問題及函數(shù)單調(diào)性的應(yīng)用,難度一般,關(guān)鍵是掌握函數(shù)單調(diào)性的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$+1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | △x+2 | B. | 2△x+(△x)2 | C. | △x+3 | D. | 3△x+(△x)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com