4.已知實數(shù)x,y滿足$\frac{x}{1+i}$+$\frac{y}{1-i}$=$\frac{5}{1-2i}$,求x,y的值.

分析 直接利用除法的運算法則以及復(fù)數(shù)相等的充要條件列出方程組求解即可.

解答 解:$\frac{x}{1+i}$+$\frac{y}{1-i}$=$\frac{5}{1-2i}$,
可得:$\frac{x(1-i)}{(1+i)(1-i)}+\frac{y(1+i)}{(1-i)(1+i)}=\frac{5(1+2i)}{(1-2i)(1+2i)}$,
可得x-xi+y+yi=2+4i,
$\left\{\begin{array}{l}x+y=2\\ y-x=4\end{array}\right.$,解得$\left\{\begin{array}{l}x=-1\\ y=3\end{array}\right.$,
故答案為:x=-1,y=3.

點評 本題考查復(fù)數(shù)的代數(shù)形式的混合運算,復(fù)數(shù)相等的充要條件的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.己知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,且($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=-2,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x|2a-x|+2x,若函數(shù)f(x)在R上是增函數(shù),則實數(shù)a的取值范圍[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列a1,a2-a1.a(chǎn)3-a2,…,an-an-1是以1為首項,3為公比的等比數(shù)列.
(1)求數(shù)列{an}的通項公式:
(2)若數(shù)列bn=2nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)圓C方程為x2+y2=r2(r>0),點M(x0,y0)是圓C內(nèi)一點,O是坐標(biāo)原點,則直線x0x+y0y=r2( 。
A.與圓C相離且與直線OM垂直B.與圓C相離且與直線OM不垂直
C.與圓C相交且與直線OM垂直D.與圓C相交且與直線OM不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,a∈R.
(I)若函數(shù)f(x)在y軸右側(cè)的第一個最高點的橫坐標(biāo)為$\frac{π}{6}$,求ω的值;
(Ⅱ)在(I)的條件下,若f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值為$\frac{\sqrt{3}+1}{2}$,求實數(shù)a的值;
(Ⅲ)若函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{2}$]上單調(diào)遞增,求實數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xoy中,直線l經(jīng)過點P(2,1),且傾斜角為45°,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρsin2θ-2cosθ=0,直線l與曲線C在第一、四象限分別交于A、B兩點.
(1)寫出直線l的參數(shù)方程,曲線C的普通方程;
(2)求|AP|:|BP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過圓x2+y2=2上一點(1,1)的切線方程為x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(-1,0),$\overrightarrow c$=(6,4),則$\overrightarrow{c}$=( 。
A.4$\overrightarrow{a}$-2$\overrightarrow$B.4$\overrightarrow{a}$+2$\overrightarrow$C.-2$\overrightarrow{a}$+4$\overrightarrow$D.2$\overrightarrow{a}$+4$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊答案