分析 要求過點(1,1)的切線方程,關鍵是求出切點坐標,由點(1,1)在圓上,故代入圓的切線方程,整理即可得到答案
解答 解:∵點(1,1)在圓上,∴過點(1,1)的圓x2+y2=2的切線方程為1×x+1×y=2,
故答案為:x+y-2=0.
點評 求過一定點的圓的切線方程,首先必須判斷這點是否在圓上.若在圓上,則該點為切點,若點P(x0,y0)在圓(x-a)2+(y-b)2=r2(r>0)上,則 過點P的切線方程為(x-a)(x0-a)+(y-b)(y0-b)=r2(r>0);若在圓外,切線應有兩條.一般用“圓心到切線的距離等于半徑長”來解較為簡單.若求出的斜率只有一個,應找出過這一點與x軸垂直的另一條切線.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$-1 | B. | $\sqrt{3}$+1 | C. | 3+2$\sqrt{3}$ | D. | 4+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{7}{12}$ | C. | $\frac{31}{40}$ | D. | $\frac{49}{60}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y2=4x或x2=$\frac{1}{2}$y | B. | y2=4x | C. | y2=4x或x2=-$\frac{1}{2}$y | D. | x2=-$\frac{1}{2}$y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com