14.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若A=$\frac{π}{4}$,且a=3,求△ABC的面積.

分析 (Ⅰ)由已知,利用正弦定理可得c=3b,結(jié)合余弦定理即可得解cosA的值. 
(Ⅱ)由已知可求bc=3,利用三角形面積公式即可計(jì)算得解.

解答 (本題滿分為13分)
解:(Ⅰ)在△ABC中,由sinA=sinC,利用正弦定理可得a=c.
又a2=3bc,
所以:c=3b.
所以:由余弦定理可得$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{b^2}+9{b^2}-9{b^2}}}{2b×3b}=\frac{1}{6}$. …6分
(Ⅱ)由已知a2=3bc,且a=3,
所以bc=3.
故△ABC的面積$S=\frac{1}{2}bcsinA=\frac{1}{2}×3×\frac{{\sqrt{2}}}{2}=\frac{3}{4}\sqrt{2}$. …13分

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.滿足不等式${(\frac{1}{3})^x}>\root{3}{9}$的實(shí)數(shù)x的取值范圍為(  )
A.$x>-\frac{2}{3}$B.$x>-\frac{3}{2}$C.$x<-\frac{2}{3}$D.$x<-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-x-1,x≤0}\\{\;}\end{array}\right.$,D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x-3y在D上的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,四棱錐O-ABCD中,AC垂直平分BD,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OD}$|=1,則($\overrightarrow{OA}$+$\overrightarrow{OC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow a$=(2,-1,3),$\overrightarrow b$=(-4,2,x),使$\overrightarrow a$⊥$\overrightarrow b$成立的x值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知m,n,l為三條不同的直線,α,β,γ為三個(gè)不同的平面,則下列命題中正確的是( 。
A.若m⊥l,n⊥l,則m∥nB.若m∥α,n∥α,則m∥nC.若m⊥α,n⊥α,則m∥nD.若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx+kx(k∈R).
(1)當(dāng)k=-1時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)當(dāng)k=0時(shí),若f(x)+$\frac{x}$-a≥0(a,b∈R)恒成立,試求ea-1-b+1的最大值;
(3)在(2)的條件下,當(dāng)ea-1-b+1取最大值時(shí),設(shè)F(b)=$\frac{a-1}$-m(m∈R),并設(shè)函數(shù)F(x)有兩個(gè)零點(diǎn)x1,x2,求證:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知p,q為命題,則“p∨q為假”是“p∧q為假”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若直線l過(guò)點(diǎn)(-1,2)且與直線x-3y+5=0垂直,則直線l的方程是3x+y+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案