3.若log${\;}_{({a}^{2}-3)}$$\frac{1}{4}$<log${\;}_{({a}^{2}-3)}$$\frac{1}{3}$,則實數(shù)a的取值范圍為( 。
A.(-2,2)B.(-$\sqrt{3}$,2)C.(-∞,-2)∪(2,+∞)D.(-$\sqrt{3}$,$\sqrt{3}$)

分析 由已知不等式結(jié)合對數(shù)的運算性質(zhì)可得a2-3>1,求解a的范圍得答案.

解答 解:∵log${\;}_{({a}^{2}-3)}$$\frac{1}{4}$<log${\;}_{({a}^{2}-3)}$$\frac{1}{3}$,
∴a2-3>1,即a2>4,解得a<-2或a>2.
∴實數(shù)a的取值范圍為(-∞,-2)∪(2,+∞).
故選:C.

點評 本題考查對數(shù)不等式的解法,考查了對數(shù)的運算性質(zhì),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若冪函數(shù)y=xα的圖象過點$({\sqrt{2},4})$,則α=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.正方體ABCD-A1B1C1D1,其中E是AA1的中點,F(xiàn)是A1B1的中點,證明:BF⊥面B1C1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若sinα-cosβ=-$\frac{1}{2}$,sinβ-cosα=-$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),則sin(α+β)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.根據(jù)下列條件,求雙曲線的方程:
(1)離心率為$\frac{5}{4}$,虛半軸長為2;
(2)與橢圓x2+5y2=5共焦點,且一條漸近線方程為y-$\sqrt{3}$x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若α為第二象限角,則k•180°+α(k∈Z)的終邊所在的象限是( 。
A.第一象限B.第一、二象限C.第一、三象限D.第二、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某長途客車站有6個售票窗口,3名乘客各選一個窗口購票,共有216種不同的選擇方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若方程a=|2x+1-2|恰有一個根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.滿足A1∪A2={x,y,z}的有序集合對(A1,A2)的個數(shù)是( 。
A.6B.8C.24D.27

查看答案和解析>>

同步練習(xí)冊答案