(Ⅰ)從集合{-1,0,1,2}中隨機(jī)選取一個數(shù)為m,從集合{0,1}中隨機(jī)選取一個數(shù)為n,求m-2n=0的概率;
(Ⅱ)從集合{x|-1≤x≤2}中隨機(jī)選取一個數(shù)為a,從集合{y|0≤y≤1}中隨機(jī)選取一個數(shù)為b,求a-2b>0的概率.
考點(diǎn):幾何概型,古典概型及其概率計(jì)算公式
專題:綜合題,概率與統(tǒng)計(jì)
分析:(Ⅰ)基本事件總數(shù)為4×2=8,滿足m-2n=0的事件總數(shù)為2,即可求m-2n=0的概率;
(Ⅱ)利用面積為測度,即可求a-2b>0的概率.
解答: 解:(Ⅰ)基本事件總數(shù)為4×2=8,滿足m-2n=0的事件總數(shù)為2,
∴m-2n=0的概率為
2
8
=
1
4

(Ⅱ)從集合{x|-1≤x≤2}中隨機(jī)選取一個數(shù)為a,從集合{y|0≤y≤1}中隨機(jī)選取一個數(shù)為b,對應(yīng)圖形的面積為3,滿足a-2b>0,對應(yīng)圖形的面積為
1
2
×2×1
=1,
∴a-2b>0的概率為
1
3
點(diǎn)評:本題主要考查了幾何概型的概率,考查學(xué)生的計(jì)算能力,于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面PAD⊥平面ABCD,四邊形ABCD是矩形,AB=1,AD=2,P點(diǎn)在以AD為直徑的半圓弧上運(yùn)動(不包括端點(diǎn))
(Ⅰ)證明:PA⊥PC;
(Ⅱ)當(dāng)二面角P─BC─D達(dá)到最大值時,求直線AD與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線C:y2=2px(p>0)上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交與A、B兩點(diǎn),如果點(diǎn)M在直線AB的上方,求△MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M有特征值λ1=8及對應(yīng)特征向量α1=
1
1
,且矩陣M對應(yīng)的變換將點(diǎn)(1,-1)變換成(4,0),求矩陣M的另一個特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公務(wù)員招聘中,既有文化考試又有面試.我省一單位在2014年公務(wù)員考試成績中隨機(jī)抽取100名考生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100)得到的頻率分布直方圖如圖所示.

(Ⅰ)求a的值以及這100名考生的平均成績;
(Ⅱ)若該單位決定在筆試成績較高的第3、4、5組中用分層抽樣抽取6名考生進(jìn)入第二輪面試.
(i)已知考生甲和考生乙的成績分別在第三組與第四組,求考生甲和考試乙同時進(jìn)入第二輪面試的概率;
(ii)單位決定在這6名考生中隨機(jī)抽取3名學(xué)生接受單位領(lǐng)導(dǎo)的面試,設(shè)第4組中有ξ名考生接受領(lǐng)導(dǎo)的面試,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為1的正方體ABCD-A1B1C1D1的頂點(diǎn)都在球面上,則AC1的長是
 
,球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+5(其中常數(shù)a,b∈R),f′(1)=3,x=-2是函數(shù)f(x)的一個極值點(diǎn).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a2-a=2(b+c),a+2b=2c-3.
(1)若sinC:sinA=4:
13
,求a、b、c;
(2)在(1)的條件下,求△ABC的最大角的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{
2n
an
}為等差數(shù)列,且a1=1,a2=
4
3

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
n+1
(n+2)•2n
•an,求數(shù)列{
bn
n
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案