10.某工人生產(chǎn)合格零售的產(chǎn)量逐月增長,前5個月的產(chǎn)量如表所示:
月份x12345
合格零件y(件)50607080100
(I)若從這5組數(shù)據(jù)中抽出兩組,求抽出的2組數(shù)據(jù)恰好是相鄰的兩個月數(shù)據(jù)的概率;
(Ⅱ)請根據(jù)所給5組數(shù)據(jù),求出 y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;并根據(jù)線性回歸方程預(yù)測該工人第6個月生產(chǎn)的合格零件的件數(shù).
(附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

分析 (Ⅰ)本題是一個古典概型,試驗(yàn)發(fā)生包含的事件是從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有C52種情況,滿足條件的事件是抽到相鄰兩個月的數(shù)據(jù)的情況有4種,根據(jù)古典概型的概率公式得到結(jié)果.
(Ⅱ)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)求線性回歸方程系數(shù)的方法,求出系數(shù)b,把b和x,y的平均數(shù),代入求a的公式,做出a的值,寫出線性回歸方程.將x=6代入可得答案.

解答 解:(Ⅰ)由題意知本題是一個古典概型,
設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件A
試驗(yàn)發(fā)生包含的事件是從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有C52=10種情況,
每種情況都是等可能出現(xiàn)的其中,
滿足條件的事件是抽到相鄰兩個月的數(shù)據(jù)的情況有4種
∴P(A)=$\frac{4}{10}$=$\frac{2}{5}$;
(Ⅱ)由數(shù)據(jù)求得$\overline{x}$=3,$\overline{y}$=72,
$\sum _{i=1}^{5}$xiyi=1200,$\sum _{i=1}^{5}$${{x}_{i}}^{2}$=55,
故$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{1200-5×3×72}{55-5×3×3}$=12,
∴$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=36,
∴y關(guān)于x的線性回歸方程為$\hat{y}$=12x+36,
當(dāng)x=6,$\hat{y}$=108(件),
即預(yù)測該工人第6個月生產(chǎn)的合格零件的件數(shù)為108件.

點(diǎn)評 本題考查線性回歸方程的求法,考查等可能事件的概率,考查線性分析的應(yīng)用,考查解決實(shí)際問題的能力,是一個綜合題目,這種題目可以作為解答題出現(xiàn)在高考卷中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線2ax-by+2=0(其中a,b為正實(shí)數(shù))經(jīng)過圓C:x2+y2+2x-4y+1=0的圓心,則$\frac{4}{a}+\frac{1}$的最小值為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=-x2+2x+2
(1)求f(x)在區(qū)間[0,3]上的最大值和最小值;
(2)若g(x)=f(x)-mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2-(3a+1)x+2a+1(a∈R).
(1)若f(x)≤0恒成立,試求a的值;
(2)解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α,β是方程x2-2mx+2-m=0(x∈R)的兩個實(shí)根,則α22的最小值為( 。
A.2B.0C.16D.-$\frac{17}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.公差為1的等差數(shù)列{an}中,Sn為其前n項的和,若僅S9在所有的Sn中取最小值,則首項a1的取值范圍為( 。
A.[-10,-9]B.(-10,-9)C.[-9,-8]D.(-9,-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{b-x}{a{x}^{2}+1}$在定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=-$\frac{2}{5}$
(1)試確定函數(shù)f(x)的解析式
(2)用定義證明:f(x)在(-1,1)上是減函數(shù)
(3)若f(a-1)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若數(shù)列{xn}滿足對任意的m∈N*(m≤n),都有{xn}的前m項和等于前m項積(前1項和及前1項積均等于首項x1),則稱數(shù)列{xn}為“和諧數(shù)列”.
(1)已知數(shù)列{an}是首項a1=2的“和諧數(shù)列”,求a3的值;
(2)設(shè)數(shù)列{an}是項數(shù)不少于3的遞增的正整數(shù)數(shù)列,證明{an}不是“和諧數(shù)列”;
(3)若數(shù)列{$\frac{1}{{a}_{n}}$}是“和諧數(shù)列”,且0<a1<1;
①試求an+1與an的遞推關(guān)系;
②證明對任意的n∈N*,都有0<an<1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的前n項和為Sn,滿足a1+a2=10,S5=40.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案