分析 (1)根據(jù)條件結(jié)合函數(shù)奇偶性的性質(zhì)進(jìn)行求解即可.
(2)利用函數(shù)單調(diào)性的定義進(jìn)行證明即可.
(3)利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進(jìn)行轉(zhuǎn)化即可.
解答 解:(1)∵f(x)=$\frac{b-x}{a{x}^{2}+1}$在定義在(-1,1)上的奇函數(shù),
∴f(0)=0,即b=0,
則f(x)=$\frac{-x}{a{x}^{2}+1}$,
∵f($\frac{1}{2}$)=-$\frac{2}{5}$
∴f($\frac{1}{2}$)=$\frac{b-\frac{1}{2}}{\frac{a}{4}+1}$═$\frac{-\frac{1}{2}}{\frac{a}{4}+1}$=-$\frac{2}{5}$,即a+4=5,則a=1,
解得a=1,即f(x)=$\frac{-x}{{x}^{2}+1}$.
(2)設(shè)-1<x1<x2<1,
則f(x1)-f(x2)=$\frac{-{x}_{1}}{{{x}_{1}}^{2}+1}$-$\frac{-{x}_{2}}{{{x}_{2}}^{2}+1}$=$\frac{{x}_{2}}{{{x}_{2}}^{2}+1}$-$\frac{{x}_{1}}{{{x}_{1}}^{2}+1}$=$\frac{{x}_{2}({{x}_{1}}^{2}+1)-{x}_{1}({{x}_{2}}^{2}+1)}{({{x}_{1}}^{2}+1)({{x}_{2}}^{2}+1)}$=$\frac{({x}_{2}-{x}_{1})(1-{x}_{1}{x}_{2})}{({{x}_{1}}^{2}+1)({{x}_{2}}^{2}+1)}$,
∵-1<x1<x2<1,
∴-1<x1x2<1,x2-x1>0,1-x1x2>0,
∴f(x1)-f(x2)=$\frac{({x}_{2}-{x}_{1})(1-{x}_{1}{x}_{2})}{({{x}_{1}}^{2}+1)({{x}_{2}}^{2}+1)}$>0,
故f(x)在(-1,1)上是減函數(shù).
(3)若f(a-1)+f(1-2a)>0,
則f(a-1)>-f(1-2a),
∵f(x)是奇函數(shù),∴-f(1-2a)=f(2a-1),
則不等式等價(jià)為f(a-1)>f(2a-1),
∵f(x)在(-1,1)上是減函數(shù),
∴$\left\{\begin{array}{l}{-1<a-1<1}\\{-1<2a-1<1}\\{a-1<2a-1}\end{array}\right.$,即$\left\{\begin{array}{l}{0<a<2}\\{0<a<1}\\{a>0}\end{array}\right.$,則0<a<1.
點(diǎn)評 本題主要考查函數(shù)奇偶性的求解,函數(shù)單調(diào)性的判斷和證明,利用定義法是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
月份x | 1 | 2 | 3 | 4 | 5 |
合格零件y(件) | 50 | 60 | 70 | 80 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com