16.在圓柱OO1中,ABCD是其軸截面,EF⊥CD于O1(如圖所示),AB=2,BC=$\sqrt{2}$.
(1)設平面BEF與⊙O所在的平面的交線為l,平面ABE與⊙O1所在的平面的交線為m,證明:l⊥m;
(2)求二面A-BE-F的余弦值.

分析 (Ⅰ)由已知條件推導出AB∥⊙O1所在平面,EF∥⊙O所在平面,再由EF⊥CD.能證明l⊥m.
(Ⅱ)分別以EF在⊙O所在平面內(nèi)的投影、AB、OO1為坐標軸建立空間直角坐標系,利用向量法能求出二面角A-BE-F的平面角的余弦值.

解答 解:(Ⅰ)證明:由于圓柱的兩底面互相平行,
∴AB∥⊙O1所在平面,EF∥⊙O所在平面.…(2分)
∴l(xiāng)∥EF,m∥AB.…(4分)
而EF⊥CD.
故l⊥m.…(6分)
(Ⅱ)解:分別以EF在⊙O所在平面內(nèi)的投影、AB、OO1為坐標軸建立空間直角坐標系(如圖所示),
則A(0,-1,0),B(0,1,0),E(-1,0,$\sqrt{2}$),F(xiàn)(1,0,$\sqrt{2}$)…(8分)
設平面ABE的法向量分別是$\overrightarrow{{n}_{1}}$=(x,y,z)
則由$\overrightarrow{{n}_{1}}$•$\overrightarrow{AB}=0$及$\overrightarrow{{n}_{1}}$•$\overrightarrow{AE}=0$,
得$\left\{\begin{array}{l}2y=0\\-x+y+\sqrt{2}z=0\end{array}\right.$,取z=1,得$\overrightarrow{{n}_{1}}$=($\sqrt{2},0,1$)…(10分)
設平面BEF的一個法向量為$\overrightarrow{{n}_{2}}$=($0,\sqrt{2},1$)
∵cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{1}{3}$
∴所求二面角A-BE-F的平面角的余弦值為$\frac{1}{3}$.…(12分)

點評 本題考查異面直線垂直的證明,考查二面角的余弦值的求法,解題時要認真審題,注意向量法的合理運用.建立坐標系,利用向量法是解決空間角常用的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={1,2,3},則B={x-y|x∈A,y∈A}中的元素個數(shù)為(  )
A.9B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(α=2b>0),直線l過點A(2a,0),B(0,2b),原點O到直線AB的距離為$\frac{4\sqrt{5}}{5}$.
(1)求橢圓的方程;
(2)是否存在過點P(0,2)的直線l與橢圓交于N,M兩點,且使$\overrightarrow{QM}$=(λ+1)$\overrightarrow{QN}$-$λ\overrightarrow{QP}$成立(Q為直線l外的一點,λ>0)?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓心為C的圓經(jīng)過點A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標準方程;
(2)若P(x,y)是圓C上的動點,求3x-4y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知直角坐標系中動點P(1+cosα,sinα)參數(shù)α∈[0,2π],在以原點為極點,x軸正半軸為極軸所建立的極坐標系中,動點Q(ρ,θ)在曲線C:$\frac{sinθ}{a}$-cosθ=$\frac{1}{ρ}$上
(1)在直角坐標系中,求點P的軌跡E的方程和曲線C的方程
(2)若動點P的軌跡E和曲線C有兩個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,△ABC的外接圓為⊙O,延長CB至Q,再延長QA至P,且QA為⊙O的切線
(1)求證:QC2-QA2=BC•QC
(2)若AC恰好為∠BAP的平分線,AB=10,AC=15,求QA的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“?n∈Z,n∈Q”的否定是( 。
A.?n0∈Z,n0∉QB.?n0∉Z,n0∈QC.?n0∈Z,n0∉QD.?n0∉Z,n0∈Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設a>b>0,c≠0,則下列不等式恒成立的為(  )
A.$\frac{1}{a}$>$\frac{1}$B.ac>bcC.$\sqrt{a}$>$\sqrt$D.$\frac{a}{c}$>$\frac{c}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{13π}{2}+\sqrt{3}$B.$\frac{(12+\sqrt{3})π}{6}$C.$\frac{15π}{2}$D.$\frac{(6+\sqrt{3})π}{3}$

查看答案和解析>>

同步練習冊答案