6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{13π}{2}+\sqrt{3}$B.$\frac{(12+\sqrt{3})π}{6}$C.$\frac{15π}{2}$D.$\frac{(6+\sqrt{3})π}{3}$

分析 由已知中的三視圖可得:該幾何體是一個半圓錐和圓柱的組合體,求出各個面的面積相加可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個半圓錐和圓柱的組合體,
圓柱的底面半徑為1,高為2,故底面積為:π,側(cè)面積為4π,
半圓錐的底面半徑為1,高為$\sqrt{3}$,故母線長為2,故側(cè)面積為:π+$\sqrt{3}$,
故組合體的表面積為:π+4π+$\frac{1}{2}$π+π+$\sqrt{3}$=$\frac{13π}{2}+\sqrt{3}$,
故選:A

點評 本題考查的知識點是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.在圓柱OO1中,ABCD是其軸截面,EF⊥CD于O1(如圖所示),AB=2,BC=$\sqrt{2}$.
(1)設平面BEF與⊙O所在的平面的交線為l,平面ABE與⊙O1所在的平面的交線為m,證明:l⊥m;
(2)求二面A-BE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=\frac{1}{4}+\frac{1}{4}sin2θ}\end{array}\right.$(θ為參數(shù)),以O為極點,x軸非負半軸為極軸,取相同的長度單位建立極坐標系,直線C2的極坐標方程為ρcosφ-2ρsinφ-4=0.
(1)求曲線C1與直線C2的普通方程;
(2)求曲線C1上的點到直線C2的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如果a>b>0,那么下列不等式成立的是( 。
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}$D.$\frac{a}$>$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設F為橢圓C的左焦點,M為直線x=-3上任意一點,過F作MF的垂線交橢圓C于點P,Q
(i)證明:OM平分線段PQ(其中O為坐標原點);
(ii)當$\frac{|MF|}{|PQ|}$最小時,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.一個正三棱錐的正視圖及俯視圖如圖所示,則該三棱錐的左視圖的面積為( 。
A.6B.$\frac{3\sqrt{3}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.曲線C經(jīng)過伸縮變換φ:$\left\{\begin{array}{l}{2x′=x}\\{y′=3y}\end{array}\right.$后得到曲線C′:y′=6x′2,則曲線c的方程為x2=2y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若對于所有的m∈R,均有M∩N≠∅,則b的取值范圍是( 。
A.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}})$C.$[{-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.某幾何體的三視圖如圖所示,則此幾何體的表面積是20+12$\sqrt{10}$.

查看答案和解析>>

同步練習冊答案