5.設(shè)a>b>0,c≠0,則下列不等式恒成立的為( 。
A.$\frac{1}{a}$>$\frac{1}$B.ac>bcC.$\sqrt{a}$>$\sqrt$D.$\frac{a}{c}$>$\frac{c}$

分析 利用不等式的基本性質(zhì)即可判斷出結(jié)論.

解答 解:∵a>b>0,c≠0,
∴$\frac{1}{a}<\frac{1}$,$\sqrt{a}$$>\sqrt$,ac與bc,$\frac{a}{c}$與$\frac{c}$的大小關(guān)系與c的正負(fù)有關(guān)系,
故選:C.

點(diǎn)評(píng) 本題考查了不等式的基本性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示的程序框圖輸出的結(jié)果是( 。
A.s=31B.s=17C.s=11D.s=14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在圓柱OO1中,ABCD是其軸截面,EF⊥CD于O1(如圖所示),AB=2,BC=$\sqrt{2}$.
(1)設(shè)平面BEF與⊙O所在的平面的交線(xiàn)為l,平面ABE與⊙O1所在的平面的交線(xiàn)為m,證明:l⊥m;
(2)求二面A-BE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p:?x∈R,|x|<0,則¬p是( 。
A.?x∈R,|x|≥0B.?x∈R,|x|>0C.?x∈R,|x|≥0D.?x∈R,|x|<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E為PB的中點(diǎn).
(1)證明:CE⊥AB;
(2)若二面角P-CD-A為60°,求直線(xiàn)CE與平面PAB所成角的正切值;
(3)若AB=kPA,求平面PCD與平面PAB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在數(shù)列{an}中,若a1=1,an+1=an+$\frac{1}{a_n}$,則a4=$\frac{29}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=\frac{1}{4}+\frac{1}{4}sin2θ}\end{array}\right.$(θ為參數(shù)),以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)C2的極坐標(biāo)方程為ρcosφ-2ρsinφ-4=0.
(1)求曲線(xiàn)C1與直線(xiàn)C2的普通方程;
(2)求曲線(xiàn)C1上的點(diǎn)到直線(xiàn)C2的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如果a>b>0,那么下列不等式成立的是( 。
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}$D.$\frac{a}$>$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若對(duì)于所有的m∈R,均有M∩N≠∅,則b的取值范圍是( 。
A.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}})$C.$[{-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案