A. | 13 | B. | 15 | C. | 19 | D. | 21 |
分析 建系,由向量式的幾何意義易得P的坐標(biāo),可化$\overrightarrow{PB}•\overrightarrow{PC}$=-4($\frac{1}{t}$-4)-(t-1)=17-(4•$\frac{1}{t}$+t),由基本不等式可得.
解答 解:由題意建立如圖所示的坐標(biāo)系,
可得A(0,0),B($\frac{1}{t}$,0),C(0,t),
∵$\overrightarrow{AP}=\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{4\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,∴P(1,4),
∴$\overrightarrow{PB}$=($\frac{1}{t}$-1,-4),$\overrightarrow{PC}$=(-1,t-4),
∴$\overrightarrow{PB}•\overrightarrow{PC}$=-4($\frac{1}{t}$-4)-(t-1)=17-(4t+$\frac{1}{t}$),
由基本不等式可得$\frac{1}{t}$+4t≥2$\sqrt{\frac{1}{t}•4t}$=4,
∴17-(4t+$\frac{1}{t}$)≤17-4=13,
當(dāng)且僅當(dāng)4t=$\frac{1}{t}$即t=$\frac{1}{2}$時(shí)取等號(hào),
∴$\overrightarrow{PB}•\overrightarrow{PC}$的最大值為13,
故選:A.
點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算,涉及基本不等式求最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}+2π$ | B. | $\frac{13π}{6}$ | C. | $\frac{7π}{3}$ | D. | $\frac{5π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3,-2 | B. | 3,2 | C. | 3,-3 | D. | -1,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
收入x(萬(wàn)元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(萬(wàn)元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
A. | 11.4萬(wàn)元 | B. | 11.8萬(wàn)元 | C. | 12.0萬(wàn)元 | D. | 12.2萬(wàn)元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高二上文周末檢測(cè)三數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:數(shù)列是遞減數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com