8.已知$\overrightarrow{AB}⊥\overrightarrow{AC},|{\overrightarrow{AB}}|=\frac{1}{t},|{\overrightarrow{AC}}|=t$,若P點(diǎn)是△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{AP}=\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{4\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,則$\overrightarrow{PB}•\overrightarrow{PC}$的最大值等于( 。
A.13B.15C.19D.21

分析 建系,由向量式的幾何意義易得P的坐標(biāo),可化$\overrightarrow{PB}•\overrightarrow{PC}$=-4($\frac{1}{t}$-4)-(t-1)=17-(4•$\frac{1}{t}$+t),由基本不等式可得.

解答 解:由題意建立如圖所示的坐標(biāo)系,
可得A(0,0),B($\frac{1}{t}$,0),C(0,t),
∵$\overrightarrow{AP}=\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{4\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,∴P(1,4),
∴$\overrightarrow{PB}$=($\frac{1}{t}$-1,-4),$\overrightarrow{PC}$=(-1,t-4),
∴$\overrightarrow{PB}•\overrightarrow{PC}$=-4($\frac{1}{t}$-4)-(t-1)=17-(4t+$\frac{1}{t}$),
由基本不等式可得$\frac{1}{t}$+4t≥2$\sqrt{\frac{1}{t}•4t}$=4,
∴17-(4t+$\frac{1}{t}$)≤17-4=13,
當(dāng)且僅當(dāng)4t=$\frac{1}{t}$即t=$\frac{1}{2}$時(shí)取等號(hào),
∴$\overrightarrow{PB}•\overrightarrow{PC}$的最大值為13,
故選:A.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算,涉及基本不等式求最值,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{1}{3}+2π$B.$\frac{13π}{6}$C.$\frac{7π}{3}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若(1+i)+(2-3i)=a+bi(a,b∈R,i是虛數(shù)單位),則a,b的值分別等于( 。
A.3,-2B.3,2C.3,-3D.-1,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知點(diǎn)F為拋物線E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(2,m)在拋物線E上,且|AF|=3,
(Ⅰ)求拋物線E的方程;
(Ⅱ)已知點(diǎn)G(-1,0),延長(zhǎng)AF交拋物線E于點(diǎn)B,證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬(wàn)元)8.28.610.011.311.9
支出y(萬(wàn)元)6.27.58.08.59.8
根據(jù)上表可得回歸直線方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.76,\hat a=\overline y-\hat b\overline x$,據(jù)此估計(jì),該社區(qū)一戶收入為15萬(wàn)元家庭年支出為( 。
A.11.4萬(wàn)元B.11.8萬(wàn)元C.12.0萬(wàn)元D.12.2萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=$\left\{\begin{array}{l}-x+6,x≤2\\ 3+{log_a}x,x>2\end{array}$(a>0且a≠1)的值域是[4,+∞),則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知矩陣A=$(\begin{array}{l}{2}&{1}\\{4}&{3}\end{array})$,B=$(\begin{array}{l}{1}&{1}\\{0}&{-1}\end{array})$
(1)求A的逆矩陣A-1;
(2)求矩陣C,使得AC=B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$則目標(biāo)函數(shù)z=3x+y的最大值為( 。
A.7B.8C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高二上文周末檢測(cè)三數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),數(shù)列滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)證明:數(shù)列是遞減數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案