20.已知矩陣A=$(\begin{array}{l}{2}&{1}\\{4}&{3}\end{array})$,B=$(\begin{array}{l}{1}&{1}\\{0}&{-1}\end{array})$
(1)求A的逆矩陣A-1
(2)求矩陣C,使得AC=B.

分析 (1)求出矩陣的行列式,即可求A的逆矩陣A-1
(2)由AC=B得(A-1A)C=A-1B,即可求矩陣C,使得AC=B.

解答 解:(1)因?yàn)閨A|=2×3-1×4=2,
所以${A^{-1}}=({\begin{array}{l}{\frac{3}{2}}&{\frac{-1}{2}}\\{\frac{-4}{2}}&{\frac{2}{2}}\end{array}})=({\begin{array}{l}{\frac{3}{2}}&{-\frac{1}{2}}\\{-2}&1\end{array}})$;
(2)由AC=B得(A-1A)C=A-1B,
故$C={A^{-1}}B=({\begin{array}{l}{\frac{3}{2}}&{-\frac{1}{2}}\\{-2}&1\end{array}})({\begin{array}{l}1&1\\ 0&{-1}\end{array}})=({\begin{array}{l}{\frac{3}{2}}&2\\{-2}&{-3}\end{array}})$.

點(diǎn)評(píng) 本小題主要考查矩陣、逆矩陣等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份20102011201220132014
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(Ⅰ)求y關(guān)于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$.
(Ⅱ)用所求回歸方程預(yù)測(cè)該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某校高一年級(jí)有900名學(xué)生,其中女生400名,按男女比例用分層抽樣的方法,從該年級(jí)學(xué)生中抽取一個(gè)容量為45的樣本,則應(yīng)抽取的男生人數(shù)為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$\overrightarrow{AB}⊥\overrightarrow{AC},|{\overrightarrow{AB}}|=\frac{1}{t},|{\overrightarrow{AC}}|=t$,若P點(diǎn)是△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{AP}=\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{4\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,則$\overrightarrow{PB}•\overrightarrow{PC}$的最大值等于( 。
A.13B.15C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某銀行規(guī)定,一張銀行卡若在一天內(nèi)出現(xiàn)3次密碼嘗試錯(cuò)誤,該銀行卡將被鎖定,小王到銀行取錢時(shí),發(fā)現(xiàn)自己忘記了銀行卡的密碼,但是可以確定該銀行卡的正確密碼是他常用的6個(gè)密碼之一,小王決定從中不重復(fù)地隨機(jī)選擇1個(gè)進(jìn)行嘗試.若密碼正確,則結(jié)束嘗試;否則繼續(xù)嘗試,直至該銀行卡被鎖定.
(1)求當(dāng)天小王的該銀行卡被鎖定的概率;
(2)設(shè)當(dāng)天小王用該銀行卡嘗試密碼次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比數(shù)列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an2,則( 。
A.p是q的充分條件,但不是q的必要條件
B.p是q的必要條件,但不是q的充分條件
C.p是q的充分必要條件
D.p既不是q的充分條件,也不是q的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在相應(yīng)位置,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為($\frac{5π}{12}$,0),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,點(diǎn)E和F分別為BC和A1C的中點(diǎn).
(Ⅰ)求證:EF∥平面A1B1BA;
(Ⅱ)求證:平面AEA1⊥平面BCB1;
(Ⅲ)求直線A1B1與平面BCB1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知△ABC的面積為4,點(diǎn)E、F分別在邊AB、AC上,且$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{BC}$,若P為線段EF上一動(dòng)點(diǎn),則$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{BC}$2的最小值為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3\sqrt{6}}{2}$C.$\frac{8\sqrt{3}}{3}$D.3$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案