1.已知點P是函數(shù)y=1-x2的圖象上位于第一象限內(nèi)的一動點,過點P作此函數(shù)圖象的切線l,直線l與x,y軸分別交于A、B兩點,O為坐標原點,設(shè)點P的橫坐標為t,△AOB的面積為f(t).
(1)求函數(shù)f(t)表達式及定義域;
(2)求f(t)取最小值時切線l的方程.

分析 (1)求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,運用點斜式方程可得切線的方程,令x=0,y=0,可得B,A的坐標,再由面積公式即可得到所求解析式和定義域;
(2)求出f(t)的導(dǎo)數(shù),求得單調(diào)區(qū)間和極值和最值,可得切點的橫坐標,代入點斜式方程可得切線的方程.

解答 解:(1)函數(shù)y=1-x2的導(dǎo)數(shù)為y'=-2x,
得切線的斜率為kl=-2t,又P(t,1-t2),
即有直線l的方程為y-1+t2=-2t(x-t),
令x=0得B(0,t2+1),
令y=0得A($\frac{t}{2}$+$\frac{1}{2t}$,0),又0<t<1,
則S△AOB=f(t)=$\frac{1}{2}$((1+t2)($\frac{t}{2}$+$\frac{1}{2t}$)=$\frac{1}{4}$(t3+2t+$\frac{1}{t}$),定義域為(0,1);
(2)f′(t)=$\frac{1}{4}$(3t2+2-$\frac{1}{{t}^{2}}$)=$\frac{3{t}^{4}+2{t}^{2}-1}{4{t}^{2}}$,
由f'(t)=0及0<t<1得t=$\frac{\sqrt{3}}{3}$,
又0<t<$\frac{\sqrt{3}}{3}$時f′(t)<0,f(t)為減函數(shù),
$\frac{\sqrt{3}}{3}$<t<1時f′(t)>0,f(t)為增函數(shù),
當t=$\frac{\sqrt{3}}{3}$時f(t)取最小值,
此時切線l方程為$y-1+\frac{1}{3}=-\frac{{2\sqrt{3}}}{3}(x-\frac{{\sqrt{3}}}{3})$,
即y=-$\frac{2\sqrt{3}}{3}$x+$\frac{4}{3}$..

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程和單調(diào)區(qū)間、極值和最值,考查三角形的面積的解析式,以及最值的求法,注意運用導(dǎo)數(shù)求解,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-2|
(1)求證:f(m)+f(n)≥|m-n|
(2)若不等式f(2x)+f(-x)≥a 恒成立,求實數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)點P是函數(shù)y=-$\sqrt{2x-{x}^{2}}$圖象上的任意一點,點P是直線x-2y-6=0上的任意一點,則|PQ|的最小值為.
A.$\frac{4}{\sqrt{5}}$B.$\sqrt{5}$+1C.$\sqrt{5}$-1D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{AB}$對應(yīng)的復(fù)數(shù)為1+i,若點A對應(yīng)的復(fù)數(shù)為1+3i,則點B對應(yīng)的復(fù)數(shù)為2+4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=lnx+1的圖象與直線y=x-a+2015恰有一個公共點,關(guān)于x的不等式loga$\frac{x+1}{x-1}$>loga$\frac{m}{x+2}$在[1,+∞)上恒成立.則實數(shù)m的取值范圍是(0,2$\sqrt{6}$+5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線頂點在原點,焦點在y軸上,拋物線上一點M(a,4)到焦點的距離等于5.
(1)求拋物線的方程和a值;
(2)過拋物線內(nèi)點P(1,4)引一弦,使弦被P平分,求該弦所在的直線方程及弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|x=3n-1,n∈N},B={-4,-1,0,2,5},則集合A∩B=(  )
A.{2,5}B.{-4,-1,2,5}C.{-1,2,5}D.{-1,0,2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法中不正確的個數(shù)是( 。
①“x=1”是“x2-3x+2=0”的充分不必要條件;
②命題“?x∈R,cosx≤1”的否定是“?x0∈R,cosx0>1”;
③若p:?x∈[1,+∞),lgx≥0,q:?x0∈R,2x0≤0,則p∨q為真命題.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為52,61,68.為了預(yù)測以后各月的患病人數(shù),甲選擇的了模型y=ax2+bx+c,乙選擇了模型y=pqx+r,其中y為患病人數(shù),x為月份數(shù),a,b,c,p,q,r都是常數(shù),結(jié)果4月,5月,6月份的患病人數(shù)分別為74,78,83,你認為誰選擇的模型較好?

查看答案和解析>>

同步練習(xí)冊答案