A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | b>c>a |
分析 0.33=0.027,由對數(shù)函數(shù)的單調(diào)性可知0<0.33<log3$\sqrt{2}$<log2$\sqrt{3}$,再由xf′(x)<0知f(x)在(0,+∞)上是減函數(shù);從而比較大小即可.
解答 解:0.33=0.027,
log2$\sqrt{3}$>log2$\sqrt{2}$=$\frac{1}{2}$;
log3$\sqrt{2}$<log3$\sqrt{3}$=$\frac{1}{2}$;
又∵$\sqrt{3}$<2,
∴$\root{4}{3}$<$\sqrt{2}$,
∴l(xiāng)og3$\sqrt{2}$>log3$\root{4}{3}$=$\frac{1}{4}$;
∴0<0.33<log3$\sqrt{2}$<log2$\sqrt{3}$;
∵xf′(x)<0,
∴x∈(0,+∞)時,f′(x)<0;
故f(x)在(0,+∞)上是減函數(shù);
故f(0.33)>f(log3$\sqrt{2}$)>f(log2$\sqrt{3}$),
即a>c>b;
故選:B.
點評 本題考查了導(dǎo)數(shù)在判斷函數(shù)的單調(diào)性時的應(yīng)用及函數(shù)的單調(diào)性的應(yīng)用,同時考查了對數(shù)的運算性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com