13.拋物線y=$\frac{{x}^{2}}{4}$的焦點(diǎn)為F,點(diǎn)P在拋物線上,若|PF|=5,則點(diǎn)P到y(tǒng)軸的距離為( 。
A.6B.5$\sqrt{2}$C.5D.4

分析 求出拋物線的焦點(diǎn)和準(zhǔn)線方程,設(shè)出P的坐標(biāo),運(yùn)用拋物線的定義,可得|PF|=d(d為P到準(zhǔn)線的距離),即可得到所求值.

解答 解:拋物線x2=4y的焦點(diǎn)F(0,1),準(zhǔn)線l為y=-1,
設(shè)拋物線的點(diǎn)P(m,n),
則由拋物線的定義,可得|PF|=d(d為P到準(zhǔn)線的距離),
即有n+1=5,
解得,n=4,∴m=±4,
所以點(diǎn)P到y(tǒng)軸的距離為4,
故選:D.

點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距是2,離心率是$\frac{1}{2}$.
(1)求橢圓的方程;
(2)若直線l:y=x+1與橢圓C相交于點(diǎn)P,Q,試求出線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1上一點(diǎn)P到焦點(diǎn)F1(-2,0)的距離為$\frac{13}{3}$,則△PF1F2的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題為真命題的是(  )
A.已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件
B.對(duì)空間任意一點(diǎn)O與不共線的三點(diǎn)A,B,C,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{Ob}+z\overrightarrow{OC}$(其中x,y,z∈R),則P,A,B,C四點(diǎn)共面
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}中,a1=2,$\frac{a_{n+1}-1}{a_n-1}$=3,若an≤100,則n的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別是F1,F(xiàn)2,上頂點(diǎn)為B點(diǎn),右焦點(diǎn)F2到直線F1B的距離為$\sqrt{3}$,橢圓M的離心率為e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)過(guò)原點(diǎn)O作兩條互相垂直的射線,與橢圓M交于P、Q兩點(diǎn),問(wèn):點(diǎn)O到直線PQ的距離是否為定值?若是,試求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓C1:$\frac{{x}^{2}}{{a_1}^{2}}$+$\frac{{y}^{2}}{{b_1}^{2}}$=1(a1>b1>0)與橢圓C2:$\frac{{x}^{2}}{{a_2}^{2}}$+$\frac{{y}^{2}}{{b_2}^{2}}$=1(a2>b2>0)的焦點(diǎn)相同,且a1>a2,給出四個(gè)結(jié)論:
①a12-b12=a22-b22;
②b1>b2
③a1-a2<b1-b2;
④$\frac{a_1}{a_2}$<$\frac{b_1}{b_2}$.
其中正確結(jié)論的個(gè)數(shù)(  )
A.2B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示,點(diǎn)P在橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)上,F(xiàn)(c,0)是橢圓的右焦點(diǎn),點(diǎn)A、B是橢圓的頂點(diǎn),若PF⊥x軸,且$\frac{|OP|}{|AB|}$=$\frac{c}{a}$,則橢圓的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若Sn=2an-1,則an=2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案