1.下列命題為真命題的是( 。
A.已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件
B.對(duì)空間任意一點(diǎn)O與不共線的三點(diǎn)A,B,C,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{Ob}+z\overrightarrow{OC}$(其中x,y,z∈R),則P,A,B,C四點(diǎn)共面
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

分析 A利用充分條件和必要條件的定義進(jìn)行判斷
B利用空間向量的共面的條件進(jìn)行判斷
C根據(jù)基本不等式成立的條件進(jìn)行判斷
D根據(jù)三角函數(shù)的有界性進(jìn)行判斷

解答 解:A.當(dāng)x=4,y=1,滿足$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$,但$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$不成立,即$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$不是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件,故A錯(cuò)誤,
B.若對(duì)空間任意一點(diǎn)O與不共線的三點(diǎn)A,B,C,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{Ob}+z\overrightarrow{OC}$(其中x,y,z∈R),只有當(dāng)x+y+z=1時(shí),P,A,B,C四點(diǎn)共面,否則不成立,故B錯(cuò)誤,
C.當(dāng)a,b<0時(shí),$\frac{a+b}{2}≥\sqrt{ab}$不成立,故C錯(cuò)誤,
D.sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∵$\frac{7}{5}$∈[-$\sqrt{2}$,$\sqrt{2}$],∴?x∈R,sinx+cosx=$\frac{7}{5}$,故D正確,
故選:D.

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及充分條件和必要條件,基本不等式以及三角函數(shù)的真假判斷,知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)=\frac{1}{ln(2x+1)}$的定義域是( 。
A.$(-\frac{1}{2},+∞)$B.$(-\frac{1}{2},0)∪(0,+∞)$C.$[-\frac{1}{2},+∞)$D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直線l與橢圓交于與橢圓相交于A、B兩點(diǎn),點(diǎn)P(1,1)是線段AB的中點(diǎn),則直線l的斜率為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,一個(gè)小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無名指,5小指,6無名指,…,一直數(shù)到2015時(shí),對(duì)應(yīng)的指頭是中指(填指頭的名稱).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各組空間向量相互垂直的是(  )
A.$\overrightarrow{a}$=(0,1,-2),$\overrightarrow$=(2,0,-1)B.$\overrightarrow{a}$=(3,-1,1),$\overrightarrow$=(-1,0,3)
C.$\overrightarrow{a}$=(0,-1,-2),$\overrightarrow$=(0,-2,4)D.$\overrightarrow{a}$=(3,-1,1),$\overrightarrow$=(-3,1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.拋物線y=$\frac{{x}^{2}}{4}$的焦點(diǎn)為F,點(diǎn)P在拋物線上,若|PF|=5,則點(diǎn)P到y(tǒng)軸的距離為(  )
A.6B.5$\sqrt{2}$C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{n}{n+1}$,則數(shù)列{an}是( 。
A.遞減數(shù)列B.遞增數(shù)列C.常數(shù)列D.擺動(dòng)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對(duì)于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2016次操作后得到的數(shù)是( 。
A.25B.250C.55D.133

查看答案和解析>>

同步練習(xí)冊(cè)答案