14.在數(shù)列{an}中,a1=1,an+1=(-1)n(an +1),記Sn為{an}的前n項(xiàng)和,則S2015=( 。
A.-1008B.-1007C.-1006D.-1005

分析 an+1=(-1)n(an +1),可得a2k+1=a2k+1,a2k=-(a2k-1+1),于是a2k+1=-a2k-1,a2k+a2k-2=-2.即可得出.

解答 解:∵an+1=(-1)n(an +1),
∴a2k+1=a2k+1,a2k=-(a2k-1+1),
∴a2k+1=-a2k-1,a2k+a2k-2=-2.
∴S2015=(a1+a3+…+a2015)+(a2+a4+…+a2014
=a1+(-2)×503+a2
=1-1006-2
=-1007.
故選:B.

點(diǎn)評(píng) 本題考查了數(shù)列“分組求和”方法、遞推關(guān)系的應(yīng)用、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,在△ABC中,已知B=$\frac{π}{4}$,D是BC邊上一點(diǎn),AD=10,AC=14,DC=6,則AB=5$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{4n-2}{3n+4}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{50}{43}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.根據(jù)政府的要求,某建筑公司擬用1080萬(wàn)購(gòu)一塊空地,計(jì)劃在該空地上建造一棟每層1500平方米的高層經(jīng)濟(jì)適用房,經(jīng)測(cè)算,如果將適用房建為x(x∈N*)層,則每平方的平均建筑費(fèi)用為800+50x(單位:元).
(1)寫出擬建適用房每平方米的平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)改適用房應(yīng)建造多少層時(shí),可使適用房每平方米的平均綜合費(fèi)用最少?最少值是多少?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=$\frac{購(gòu)地總費(fèi)用}{建筑總面積}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.證明以點(diǎn)A(3,4),B(-2,-1),C(4,1)為頂點(diǎn)的三角形是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列{an}的通項(xiàng)為an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sn=9,則項(xiàng)數(shù)n=99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等比數(shù)列{an}滿足a1a2=$\frac{1}{3}$,a3=$\frac{1}{9}$
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n+1}{1×2}+\frac{n+1}{2×3}+…+\frac{n+1}{n(n+1)}$,求數(shù)列{$\frac{_{n}}{{a}_{n}}$}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若二次函數(shù)f(x)滿足f(1+x)=f(1-x),且其圖象開口向上,則f(0),f(1),f(3)的大小關(guān)系為f(1)<f(0)<f(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=x1nx的零點(diǎn)為( 。
A.0或1B.1C.(1,0)D.(0,0)或(1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案