4.計(jì)算下列各題:
(1)${(0.027)^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}-{(\sqrt{2}-1)^0}$
(2)${log_5}35+2{log_{\frac{1}{2}}}\sqrt{2}-{log_5}\frac{1}{50}-{log_5}14+{5^{{{log}_5}3}}$.

分析 利用有理數(shù)指數(shù)冪和對運(yùn)算法則計(jì)算.

解答 解:(1)原式=(0.33)${\;}^{-\frac{1}{3}}$-(7-1-2+[($\frac{5}{3}$)2]${\;}^{\frac{1}{2}}$-1=0.3-1-72+$\frac{5}{3}$-1=$\frac{10}{3}$-49+$\frac{5}{3}$-1=-45.
(2)原式=log535+log550-log514+log${\;}_{\frac{1}{2}}$2+3=log5($\frac{35×50}{14}$)-1+3=log5125+2=3+2=5.

點(diǎn)評 本題考查了對數(shù)運(yùn)算法則,有理數(shù)指數(shù)冪運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=x3+x2-2x-2的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,參考數(shù)據(jù)如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;
f(1.438)=0.165,f(1.4065)=-0.052.
那么方程x3+x2-2x-2=0的一個(gè)近似根可以為(精確度為0.1)( 。
A.1.2B.1.35C.1.43D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a、b都是正數(shù),則關(guān)于x的不等式$-b<\frac{1}{x}<a$的解集是( 。
A.$(-\frac{1},0)∪(0,\frac{1}{a})$B.$(-\frac{1}{a},0)∪(0,\frac{1})$C.$(-∞,-\frac{1})∪(\frac{1}{a},+∞)$D.$(-\frac{1}{a},\frac{1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C上的動(dòng)點(diǎn)M到定點(diǎn)F(1,0)的距離和它到定直線x=3的距離之比是1:$\sqrt{3}$.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)F(1,0)的直線l與C交于A,B兩點(diǎn),當(dāng)△ABO面積為$\frac{2\sqrt{6}}{5}$時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A(2,3)、B(-1,4),則直線AB的斜率是$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,則輸出S的值為( 。
A.-10B.6C.8D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示:已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓N的切線l與拋物線C交于不同的兩點(diǎn)A,B.
(1)當(dāng)直線l的斜率為1時(shí),求線段AB的長;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),問是否存在直線l,使得$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法中:
①在空間直角坐標(biāo)系中,在x軸上的點(diǎn)的坐標(biāo)一定可記為(0,b,c);
②在空間直角坐標(biāo)系中,在yOz平面上的點(diǎn)的坐標(biāo)一定可記為(0,b,c);
③在空間直角坐標(biāo)系中,在z軸上的點(diǎn)的坐標(biāo)一定可記為(0,0,c);
④在空間直角坐標(biāo)系中,在xOz平面上的點(diǎn)的坐標(biāo)一定可記為(a,0,c).
其中正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在如圖所示的正方形中隨機(jī)擲一粒豆子,豆子落在該正方形內(nèi)切圓的四分之一圓(如圖陰影部分)中的概率是$\frac{π}{16}$.

查看答案和解析>>

同步練習(xí)冊答案