16.如圖所示:已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓N的切線l與拋物線C交于不同的兩點A,B.
(1)當(dāng)直線l的斜率為1時,求線段AB的長;
(2)設(shè)點O為坐標(biāo)原點,問是否存在直線l,使得$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,求出直線l的方程;若不存在,請說明理由.

分析 (1)圓N的圓心N為(-2,0),半徑r=2$\sqrt{2}$,設(shè)A(x1,y1),B(x2,y2),設(shè)l的方程,利用直線l是圓N的切線,求得m的值,從而可得直線l的方程,與拋物線方程聯(lián)立,利用韋達定理,即可計算弦長|AB|;
(2)假設(shè)存在符合題意的直線l,依題意可設(shè)直線l的方程為x=ty+n(n>0),利用直線與圓相切,$\overrightarrow{OA}⊥\overrightarrow{OB}$,結(jié)合韋達定理,即可得出結(jié)論.

解答 解:因為圓N:(x+2)2+y2=8,所以圓心N為(-2,0),半徑r=2$\sqrt{2}$,…(1分)
設(shè)A(x1,y1),B(x2,y2),
(1)當(dāng)直線l的斜率為1時,設(shè)l的方程為y=x+m即x-y+m=0
因為直線l是圓N的切線,所以$\frac{|-2+m|}{\sqrt{2}}$=2$\sqrt{2}$,解得m=-2或m=6(舍),此時直線l的方程為y=x-2,…(3分)
由$\left\{\begin{array}{l}{y=x-2}\\{{y}^{2}=2x}\end{array}\right.$消去x得y2-2y-4=0,
所以△>0,y1+y2=2,y1y2=-4,…(4分)
所以弦長|AB|=$\sqrt{1+1}•\sqrt{4+16}$=2$\sqrt{10}$…(5分)
(2)假設(shè)存在符合題意的直線l,依題意可設(shè)直線l的方程為x=ty+n(n>0)
∵直線l與圓N相切,∴$\frac{|-2-n|}{\sqrt{1+{t}^{2}}}$=2$\sqrt{2}$,
∴(n+2)2=8(1+t2)①…(6分)
∵$\overrightarrow{OA}⊥\overrightarrow{OB}$,
∴x1x2+y1y2=0而x1=ty1+n,x2=ty2+n
∴(1+t2)y1y2+tn(y1+y2)+n2=0②…(8分)
由$\left\{\begin{array}{l}{x=ty+n}\\{{y}^{2}=2x}\end{array}\right.$,∴y2-2ty-2n=0,
∴y1+y2=2t,y1y2=-2n③…(9分)
把③代入②得:-2n(1+t2)+tn•2t+n2=0
又n>0,∴n=2(10分)
把n=2代入①得:t=±1;此時l的方程為:x=±y+2.
故存在符合題意的直線l的方程為x±y-2=0.…(12分)

點評 本題考查直線與拋物線的位置關(guān)系,考查弦長的計算,考查韋達定理的運用,解題的關(guān)鍵是聯(lián)立方程,正確運用韋達定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sinx+cos2x.
(Ⅰ)若α為銳角,且$sin(α-\frac{π}{3})=-\frac{1}{2}$,求f(α)的值;
(Ⅱ)若不等式|f(x)-m|≤2在$x∈[-\frac{π}{6},\frac{π}{2}]$上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,P是橢圓上一點,|PF1|=2|PF2|,∠F1PF2=$\frac{π}{3}$,則橢圓離心率的值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計算下列各題:
(1)${(0.027)^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}-{(\sqrt{2}-1)^0}$
(2)${log_5}35+2{log_{\frac{1}{2}}}\sqrt{2}-{log_5}\frac{1}{50}-{log_5}14+{5^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.-1B.4C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.物理學(xué)家和數(shù)學(xué)家牛頓曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型,如果物體的初始溫度為θ1℃,空氣溫度為θ0℃,則tmin后物體的溫度f(t)滿足:f(t)=θ0+(θ10)•e-kt(其中k為正的常數(shù),e=2.71828…為自然對數(shù)的底數(shù)),現(xiàn)有65℃的物體,放在15℃的空氣中冷卻,5min以后物體的溫度是45℃.
(Ⅰ)求k的值;
(Ⅱ)求從開始冷卻,經(jīng)過多少時間物體的溫度是25.8℃?
(Ⅲ)運用上面的數(shù)據(jù),作出函數(shù)f(t)的圖象的草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C菱形,∠CBB1=60°,AB⊥平面BB1C1C,且D是BC的中點.
(1)求證:A1B∥平面ADC1;
(2)若AB=2,求三棱錐B1-ABC體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直三棱柱ABC-A1B1C1中,AB=AC=2,$∠BAC=\frac{2π}{3}$,AA1=4,則該三棱柱的外接球的體積為$\frac{{64\sqrt{2}π}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b∈R+,a+b=1,求證:
①(a+$\frac{1}{a}$)(b+$\frac{1}$)≥$\frac{25}{4}$;
②(a+$\frac{1}{a}$)2+(b+$\frac{1}$)2≥$\frac{25}{2}$.

查看答案和解析>>

同步練習(xí)冊答案