17.已知兩個(gè)相關(guān)變量的統(tǒng)計(jì)數(shù)據(jù)如表:
x23456
y1115192629
求兩變量的線性回歸方程.
參考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\overline{a}$=$\overline{y}$-b$\overline{x}$.

分析 先求出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點(diǎn)求出a的值,寫出線性回歸方程.

解答 解:由表中數(shù)據(jù)得:$\overline{x}$=4,$\overline{y}$=20
其他數(shù)據(jù)如表:

ixiyi${x}_{i}^{2}$xiyi
1211422
2315945
34191676
452625130
562936174
合計(jì)2010090447
進(jìn)而可求得:b=4.7,a=1.2  
所以線性回歸方程是y=4.7x+1.2  (10分)

點(diǎn)評 本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是利用最小二乘法求出線性回歸方程的系數(shù),考查學(xué)生的運(yùn)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,直線a2x+y+2=0與直線bx-(a2+1)y-1=0互相垂直,則ab的最小值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.集合A={x|3≤x<7},B={x|2<x<10},求A∪B,A∩B,(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.?dāng)?shù)列{an}是公差不為零的等差數(shù)列,若a1,a3,a4成等比數(shù)列,則公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x2-1)的定義域?yàn)?[-\sqrt{3},\sqrt{3}]$,則f(x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,1]B.[0,3]C.[-1,2]D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.點(diǎn)P在圓(x-3)2+(y-4)2=1上運(yùn)動(dòng),兩定點(diǎn)A、B的坐標(biāo)分別為(-6,0)、(6,0).
(1)求$\overrightarrow{OP}$$•\overrightarrow{AP}$的取值范圍;
(2)求|PA|2+|PB|2的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí)f(x)>0,且f(xy)=f(x)+f(y)
(1)求證:$f({\frac{1}{x}})=-f(x)$
(2)證明:f(x)在定義域上是增函數(shù)
(3)如果$f({\frac{1}{3}})=-1$,求滿足不等式$f(x)-f({\frac{1}{x-2}})≥2$的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=1+\frac{a}{{{2^x}+1}}({a∈R})$.
(1)當(dāng)a=-2時(shí),求f(x)的反函數(shù);
(2)當(dāng)a≥9時(shí),證明函數(shù)g(x)=f(x)+2x在[0,1]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,且|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,則向量$\overrightarrow{a}$與向量$\overrightarrow{a}$+$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案