分析 (1)利用圓心到直線的距離小于半徑,即可求實(shí)數(shù)m的取值范圍;
(2)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),由題意得OP、OQ所在直線互相垂直,即kOP•kOQ=-1,亦即x1x2+y1y2=0,根據(jù)P、Q在直線l上可變?yōu)殛P(guān)于y1、y2的表達(dá)式,聯(lián)立直線方程、圓的方程,消掉x后得關(guān)于y的二次方程,將韋達(dá)定理代入上述表達(dá)式可得m的方程,解出即可.
解答 解:(1)圓x2+y2+x-6y+m=0,可化為(x+$\frac{1}{2}$)2+(y-3)2=-m+$\frac{37}{4}$,
∴$\frac{|-\frac{1}{2}+6-3|}{\sqrt{5}}$<$\sqrt{-m+\frac{37}{4}}$,
∴-m+$\frac{37}{4}$>$\frac{5}{4}$,
∴m<8;
(2)設(shè)P(x1,y1),Q(x2,y2),
由題意得:OP、OQ所在直線互相垂直,則kOP•kOQ=-1,∴x1x2+y1y2=0,
又因?yàn)閤1=3-2y1,x2=3-2y2,
所以(3-2y1)(3-2y2)+y1y2=0,即5y1y2-6(y1+y2)+9=0①,
將直線l的方程:x=3-2y代入圓的方程得:5y2-20y+12+m=0,
所以y1+y2=4,y1y2=$\frac{12+m}{5}$,
代入①式得:5×$\frac{12+m}{5}$-6×4+9=0,解得m=3,
故實(shí)數(shù)m的值為3.
點(diǎn)評(píng) 本題給出直線與圓相交于點(diǎn)P、Q,并且以PQ為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O,求參數(shù)的值.著重考查了直線方程、圓的方程和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$) | B. | f(sin$\frac{π}{3}$)<f(cos$\frac{π}{3}$) | C. | f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$) | D. | f(sin$\frac{5π}{6}$)>f(cos$\frac{5π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>4 | B. | 0<x<4 | C. | x<-4 | D. | -4<x<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com