12.如圖所示,在地面上有一旗桿OP,測得它的高度10m,在地面上取一基線AB,AB=20m,在A處測得P點(diǎn)的仰角∠OAP=30°,在B處測得P點(diǎn)的仰角∠OBP=45°,則∠AOB=$\frac{π}{2}$.

分析 分別在直角三角形AOP和直角三角形BDP中,求得OA,OB,進(jìn)而在△AOB中,由勾股定理得到結(jié)論.

解答 解:在直角△AOP中,得OA=OPcot30°=10$\sqrt{3}$.
在直角△BOP中,得OB=OPcot45°=10,
在△AOB中,400=(10$\sqrt{3}$)2+102,
∴∠AOB=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點(diǎn)評 本題主要考查了解三角形的實(shí)際應(yīng)用.考查了學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知圓C過點(diǎn)(2,0),且圓心在x軸的正半軸上,直線l:x+y-7=0被該圓所截得的弦長為2$\sqrt{7}$,則圓C的標(biāo)準(zhǔn)方程為(x-5)2+y2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示的幾何體是由棱長為2cm的正方體ABCD一A1B1C1D1被平面AB1D1所截得的較大部分
(1)求點(diǎn)C到平面AB1D1的距離;
(2)求AC與平面AB1D1所成角的大小(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線2(m+1)x+(m-3)y-5m-1=0與圓(x-1)2+y2=3的位置關(guān)系是( 。
A.相交B.相切C.相離D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為(5,15],(15,25](25,35],(35,45],由此得到樣本的重量頻率分布直方圖,如圖.
(Ⅰ)求a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的平均值;
(Ⅲ)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在(5,15]內(nèi)的小球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.正方體ABCD-A1B1C1D1中,求
(1)A1B1與C1C所成的角;
(2)AD與B1B所成的角;
(3)A1D與BC1所成的角;
(4)D1C與A1A所成的角;
(5)A1D與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的導(dǎo)數(shù)
(1)y=$\sqrt{{x}^{2}+1}$
(2)y=sin22x
(3)y=e-xsin2x
(4)y=ln$\sqrt{1+{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的導(dǎo)數(shù).
(1)y=$\frac{\sqrt{{x}^{5}}+\sqrt{{x}^{7}}+\sqrt{{x}^{9}}}{\sqrt{x}}$
(2)f(x)=2-2sin2$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}是空間的一個(gè)單位正交基底,向量{$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{c}$}是空間另一個(gè)基底,若向量$\overrightarrow{p}$在基底{$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{c}$}下的坐標(biāo)為($\frac{3}{2}$,-$\frac{1}{2}$,3)則$\overrightarrow{p}$在基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}下的坐標(biāo)為(1,2,3).

查看答案和解析>>

同步練習(xí)冊答案