某工廠有工人1000人,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣的方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處的生產(chǎn)能力指一天加工的零件數(shù)).
(1)A類工人和B類工人中各抽查多少工人?
(2)從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2.
表1
生產(chǎn)能力分組 [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 4 8 x 5 3
表2
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 36 18
①求x,y,再完成下列頻率分布直方圖;

②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組
中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
考點:頻率分布直方圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:(1)根據(jù)分層抽樣的特征是各層所抽取的樣本數(shù)比例相等,計算出A、B類工人應(yīng)抽查的人數(shù);
(2)①根據(jù)樣本容量計算出x、y的值并補充完整頻率分布直方圖;
②計算出A類工人和B類工人生產(chǎn)能力的平均數(shù),并由此估計該工廠工人的生產(chǎn)能力的平均數(shù)即可.
解答: 解:(1)A類工人應(yīng)抽查的人數(shù)是100×
250
1000
=25;
B類工人應(yīng)抽查的人數(shù)是100×
750
1000
=75.
(2)①根據(jù)題意,由4+8+x+5+3=25,得x=5,
由6+y+36+18=75,得y=15.
補充完整頻率分布直方圖如下:
,;
②∵
.
xA
=
4
25
×105+
8
25
×115+
5
25
×125+
5
25
×135+
3
25
×145=123,
.
xB
=
6
75
×115+
15
75
×125+
36
75
×135+
18
75
×145=133.8,
.
x
=
25
100
×123+
75
100
×133.8=131.1;
∴A類工人生產(chǎn)能力的平均數(shù),B類工人生產(chǎn)能力的平均數(shù)以及該工廠工人生產(chǎn)能力的平均數(shù)的估計
值分別為123,133.8,131.1.
點評:本題考查了分層抽樣、頻率分布直方圖以及求數(shù)據(jù)的平均數(shù)的問題,解題時應(yīng)熟練地掌握這些知識并能靈活應(yīng)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在(-2,2)的奇函數(shù),當(dāng)x∈(0,2)時,f(x)=2x-1,則f(log2
1
3
)的值為(  )
A、
32
-1
B、-
2
3
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a∈(0,1),b∈(0,1),則y=log2(bx2-ax+1)的值域為R的概率是( 。
A、
1
7
B、
2
3
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-(a+1)x+a<0,
(1)若不等式在(1,3)上有解,求實數(shù)a的取值范圍;
(2)若不等式在(1,3)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項和為Sn,S4=2S2+4.
(Ⅰ)求公差d的值;
(Ⅱ)若a1=-5,求Sn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點A、B是單位圓O上的兩點,點C是圓O與x軸的正半軸的交點,將銳角α的終邊OA按逆時針方向旋轉(zhuǎn)
π
3
到OB.
(1)若點A的坐標(biāo)為(
3
5
,
4
5
),求
1+sin2α
1+cos2α
的值;
(2)用α表示|BC|,并求|BC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2=r2,圓內(nèi)有一定點P(a,b),A,B是圓周上的兩個動點,PA⊥PB,求矩形APBQ的頂點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(x-a2)[x-(a-1)]>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
.
3
cosx
1sinx
.
,則方程f(x)•cosx+
1
2
=0的解是
 

查看答案和解析>>

同步練習(xí)冊答案