A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,1) |
分析 由題意可得到f(x)+f′(x)>1,而令g(x)=ex[f(x)-1],從而可得到g′(x)>0,這便說明g(x)在R上為增函數(shù),而可求得g(0)=7,從而$\frac{f(x)-1}{{e}^{ln7-x}}>1$便可得到g(x)>g(0),這樣即可得出原不等式的解集.
解答 解:2f(x)•2f′(x)=2f(x)+f′(x)>2;
∴f(x)+f′(x)>1;
令g(x)=ex[f(x)-1],則g′(x)=ex[f(x)+f′(x)-1]>0;
∴g(x)在R上為增函數(shù);
∵f(0)=8;
∴g(0)=f(0)-1=7;
由$\frac{f(x)-1}{{e}^{ln7-x}}>1$得,$\frac{{e}^{x}[f(x)-1]}{7}>1$;
∴g(x)>g(0);
∴x>0;
即原不等式的解集為(0,+∞).
故選:B.
點(diǎn)評(píng) 考查指數(shù)式的運(yùn)算,指數(shù)函數(shù)的單調(diào)性,以及構(gòu)造函數(shù)解決問題的方法,根據(jù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,根據(jù)單調(diào)性定義解不等式的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{24}{49}$ | B. | 12 | C. | $\frac{12}{49}$ | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{1}{4}$i | D. | $\frac{1}{4}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-4y2=2 | B. | x2-y2=2 | C. | x2-2y2=1 | D. | 2x2-y2=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com