分析 利用輔助角公式化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域求得 f(x)的最大值.
解答 解:∵函數(shù)f(x)=sinx-cosx+1=$\sqrt{2}$sin(x-$\frac{π}{4}$)+1,
在[$\frac{3π}{4}$,$\frac{7π}{4}$]上,x-$\frac{π}{4}$∈[$\frac{π}{2}$,$\frac{3π}{2}$],sin(x-$\frac{π}{4}$)∈[-1,1],$\sqrt{2}$sin(x-$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∴f(x)=$\sqrt{2}$sin(x-$\frac{π}{4}$)+1∈[1-$\sqrt{2}$,1+$\sqrt{2}$],∴f(x)的最大值為1+$\sqrt{2}$,
故答案為:1+$\sqrt{2}$.
點評 本題主要考查輔助角公式,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最小值6 | B. | 有最大值6 | C. | 有最大值9 | D. | 有最小值3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,2) | B. | (-∞,-4)∪(2,+∞) | C. | (2,+∞) | D. | (-∞,-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,0} | B. | {0,1} | C. | {-1,0,1} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com