10.已知集合A={x∈R|x≤1},B={x∈R|x2≤4},A∩B=( 。
A.(-∞,2]B.[-2,2]C.[1,2]D.[-2,1]

分析 利用不等式的性質(zhì)先求出集合B,再由交集定義求出A∩B.

解答 解:∵集合A={x∈R|x≤1},
B={x∈R|x2≤4}={x∈R|-2≤x≤2},
∴A∩B={x|-2≤x≤1}=[-2,1].
故選:D.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意不等式性質(zhì)及交集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2ωx+cos2ωx-$\frac{1}{2}$,ω>0,x∈R,其相鄰兩對稱軸的距離為$\frac{π}{2}$.
(Ⅰ)確定ω的值;
(Ⅱ)在所給的平面直角坐標(biāo)系中作出函數(shù)f(x)在區(qū)間[$\frac{π}{6}$,$\frac{11π}{12}$]的圖象;
(Ⅲ)經(jīng)過怎樣的變換,由函數(shù)f(x)的圖象可以得到函數(shù)y=cosx的圖象?寫出變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)等差數(shù)列{an}的前n項和為Sn.已知(a2-1)3+2013(a2-1)=1,(a2012-1)3+2013(a2012-1)=-1,則S2013等于( 。
A.1006B.1007C.2012D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{4x-y+1≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-3x的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.集合U=R,P={x|4≤x≤7},Q={x|-2≤x≤5},求P∪Q、∁U(P∩Q)及(∁UP)∩Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U=R,集合A={x∈N|y=$\sqrt{4-x}$},B={y|y=2x-1},則A∩B=( 。
A.{x|0≤x≤4}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.由曲線y=x3與直線y=4x所圍成的平面圖形的面積為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.判斷下列對應(yīng)是否是實數(shù)集R上的函數(shù):
(1)f:把x對應(yīng)到3x+1;
(2)g:把x對應(yīng)到|x|+1;
(3)h:把x對應(yīng)到$\frac{1}{2x-5}$;
(4)r:把x對應(yīng)到$\sqrt{3x+6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過直線x+y=0與x-y+2=0的交點且平行于直線2x+y=0的直線方程為2x+y+1=0.

查看答案和解析>>

同步練習(xí)冊答案