5.集合U=R,P={x|4≤x≤7},Q={x|-2≤x≤5},求P∪Q、∁U(P∩Q)及(∁UP)∩Q.

分析 根據(jù)集合的交、并、補(bǔ)集的混合運(yùn)算的法則計(jì)算即可.

解答 解:集合U=R,P={x|4≤x≤7},Q={x|-2≤x≤5},
則P∪Q={x|-2≤x≤7},
P∩Q={x|4≤x≤5},
∴∁U(P∩Q)={x|x<4或x>5},
∵∁UP={x|x<4或x>7}
∴(∁UP)∩Q={x|-2≤x<4}.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,解答的關(guān)鍵是熟練交、并、補(bǔ)集的概念,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各式中,正確的是( 。
A.sin(-$\frac{π}{8}$)>sin(-$\frac{π}{10}$)B.cos(-$\frac{23π}{5}$)>cos(-$\frac{17π}{4}$)
C.cos250°>cos260°D.tan144°<tan148°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$,b+c=$\sqrt{2}$+1(c<b),△ABC的面積為$\frac{1+\sqrt{3}}{4}$,則a的值為$\sqrt{2+\sqrt{3}-\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=an+n2-1,數(shù)列{bn}滿足:b1+3b2+5b3+…+(2n-1)•bn=(n-1)•3n+1+3(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=$\frac{{a}_{1}}{_{1}}$+$\frac{{a}_{2}}{_{2}}$+$\frac{{a}_{3}}{_{3}}$+…+$\frac{{a}_{n}}{_{n}}$,求滿足Tn<$\frac{11}{6}$的n的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$的奇偶性是(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x∈R|x≤1},B={x∈R|x2≤4},A∩B=( 。
A.(-∞,2]B.[-2,2]C.[1,2]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.給出下列命題:
①命題p:?x0∈R,x${\;}_{0}^{2}$>x0且x${\;}_{0}^{3}$<1,則¬p:?x∈R,x2≤x且x3≥1;
②命題“若x2+y2=0,則x,y中至少有一個(gè)為0“的否命題是“若x2+y2≠0,則x,y都不為0”;
③設(shè)A={x|ax-1=0,a∈R},則A中恰有一個(gè)元素;
④曲線y=tanx的對(duì)稱中心為($\frac{π}{2}$+kπ,0)(k∈Z).
其中正確的各數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體,存在非零常數(shù)T,對(duì)任意x∈R,有f(x+T)=Tf(x)成立.
(1)函數(shù)f(x)=x是否屬于集合M?說(shuō)明理由;
(2)設(shè)f(x)∈M,且T=2,已知當(dāng)1<x<2時(shí),f(x)=x+lnx,求當(dāng)-3<x<-2時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|2x-1|,x∈R,
(1)解不等式f(x)<x+1;
(2)若對(duì)于x,y∈R,有|x-y-1|≤$\frac{1}{3}$,|2y+1|≤$\frac{1}{6}$,求證:f(x)<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案