4.函數(shù)f(x)=2x的圖象在x=0處的切線方程是(  )
A.y=x+1B.y=2x+1C.y=xln2-1D.y=xln2+1

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點,再由斜截式方程即可得到所求方程.

解答 解:函數(shù)f(x)=2x的導(dǎo)數(shù)為f′(x)=2xln2,
即有在x=0處的切線斜率為k=2°ln2=ln2,
切點為(0,1),
則在x=0處的切線方程為y=xln2+1.
故選:D.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點處的導(dǎo)數(shù)即為曲線在該點處的切線的斜率,正確求導(dǎo)和運用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定點A(0,-4),O為坐標(biāo)原點,以O(shè)A為直徑的圓O的方程是(  )
A.(x+2)2+y2=4B.(x+2)2+y2=16C.x2+(y+2)2=4D.x2+(y+2)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的通項公式為an=$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)n-($\frac{1-\sqrt{5}}{2}$)n],n∈N*.記Sn=C${\;}_{n}^{1}$a1+C${\;}_{n}^{2}$a2+…+C${\;}_{n}^{n}$an
(1)求S1,S2的值;
(2)求所有正整數(shù)n,使得Sn能被8整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB,E為PB的中點.
(Ⅰ)求證:PD∥平面ACE;
(Ⅱ)求證:PC⊥AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.將函數(shù)f(x)=2sin2x的圖象向左平移$\frac{π}{3}$個單位后得到函數(shù)g(x),則函數(shù)g(x)的單調(diào)遞減區(qū)間為[kπ$-\frac{π}{12}$,k$π+\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a>0,b>0,若2是2a與2b的等比中項,則$\frac{1}{a}+\frac{1}$的最小值為(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某學(xué)校團委組織了“文明出行,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為[40,50),[50,60),…,[90,100]),
(1)求成績在[70,80)的頻率,并補全此頻率分布直方圖;
(2)求這次考試平均分的估計值;
(3)若從成績在[40,50)和[90,100]的學(xué)生中任選兩人,求他們的成績在同一分組區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log2(2+x)+log2(2-x).
(Ⅰ)求證:函數(shù)f(x)為偶函數(shù);
(Ⅱ)求$f(\sqrt{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在某次飛鏢集訓(xùn)中,甲、乙、丙三人10次飛鏢成績的條形圖如下所示,則他們?nèi)酥谐煽冏罘(wěn)定的是丙.

查看答案和解析>>

同步練習(xí)冊答案