13.已知sinαcosβ-cosαsinβ=$\frac{1}{3}$,則cos(2α-2β)=$\frac{8}{9}$.

分析 根據(jù)兩角和差的正弦公式以及余弦的二倍角公式進(jìn)行化簡(jiǎn)即可.

解答 解:由sinαcosβ-cosαsinβ=$\frac{1}{3}$得sin(α-β)=$\frac{1}{3}$,
則cos(2α-2β)=cos2(α-β)=1-2sin2(α-β)=1-($\frac{1}{3}$)2=1-$\frac{1}{9}$=$\frac{8}{9}$,
故答案為:$\frac{8}{9}$

點(diǎn)評(píng) 本題主要考查三角函數(shù)值的化簡(jiǎn)和求值,根據(jù)兩角和差的正弦公式以及余弦的倍角公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.現(xiàn)有12張不同的卡片,其中紅色、黃色、綠色、藍(lán)色卡片各3張,從中任取3張,要求這3張卡片不能是同一種顏色,且藍(lán)色卡片至多1張.則不同的取法的共有( 。
A.135B.172C.189D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,是一個(gè)算法程序,則輸出的n的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≤y\\ y≤10-2x\\ x≥1\end{array}$,則$z={2^x}×{({\frac{1}{4}})^y}$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表,
優(yōu)秀非優(yōu)秀合計(jì)
甲班105060
乙班203050
合計(jì)3080110
(1)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到9號(hào)或10號(hào)的概率.
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)畫(huà)出y=f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象;
(4)求f(x)在[0,$\frac{π}{2}$]的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.復(fù)數(shù)z=$\frac{(1+i)(1-i)}{2i}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(0,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.被圓x2+y2-2y=0所截的弦長(zhǎng)為2,且與直線x+2y=0垂直的直線方程是2x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知角θ是第二象限角,P(a,3)為其終邊上一點(diǎn),且cosθ=$\frac{a}{5}$,則a=( 。
A.-4B.±4C.4D.±5

查看答案和解析>>

同步練習(xí)冊(cè)答案